14. ABSTRACT

Rapid detection of small particles such as pathogens, environmental pollutants, and microorganisms is important for both the security and health of society at large. The main goal of this proposal is to establish the scientific foundations for rapidly detecting small particles at low concentrations by combining controlled chemical autocatalytic amplification and stochastic confinement of small particles with the microfluidic expertise that has been developed in PI's laboratories. We focus on developing computational models to predict the optimal single step amplification and multi-step amplification cascades, and we will compare these models to existing biological amplification networks, including blood clotting and apoptosis. Simultan

15. SUBJECT TERMS

- [] Document is Public Release; distribution is Unlimited

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

- [] U

18. NUMBER OF PAGES

- [] U

19a. NAME OF RESPONSIBLE PERSON

Rustem Ismagilov

19b. TELEPHONE NUMBER (include area code)

773-702-5816
RESEARCH FINDINGS:

This research uses a simple experimental chemical model to understand the nonlinear dynamics of the complex biochemical network of hemostasis (blood clotting). The chemical model is based on a modular mechanism describing initiation of clotting. Briefly, we constructed a chemical model of the hemostasis network, which contains approximately 80 reactions. Our model contained three interacting modules; each module consisted of a single chemical reaction with appropriate kinetics. In the model, a threshold response was regulated by the interaction of the three modules. Previously published work describes this approach in detail (PNAS 2006 103:15747-15752). Using this model system, we demonstrated that the spatial localization of bacteria profoundly affected coagulation of human and mouse blood and plasma.

Spatial Localization of *B. cereus* controls coagulation

We hypothesized that initiation of coagulation by bacteria would be regulated by the spatial localization, not the total amount, of bacteria (Fig 1a). In other words, for bacteria that activate coagulation factors, coagulation would only occur when a cluster of bacteria forms. This hypothesis was based on previous experiments with human blood and plasma that showed i) stimuli must exceed a local threshold concentration to initiate coagulation,\(^1,2\) and ii) this threshold response to concentration leads to a spatial threshold response, in which coagulation initiated on a patch of stimulus above, but not below, a threshold size.\(^3,4\)

To test this hypothesis, we compared the clot time of human blood plasma exposed to bacteria dispersed in solution to bacteria clustered on the surface of a microfluidic chamber *Bacillus cereus* (*B. cereus*) spatially localized to a surface cluster rapidly initiated coagulation. However, *B. cereus* dispersed in solution at concentrations of up to \(10^7\) colony-forming units (CFU) mL\(^{-1}\) (Fig 1b). In a second experiment, we used microfluidics\(^5,6\) and micropatterned surfaces to control the spatial distribution of bacteria and to demonstrate that the size of the
cluster, rather than amount of bacteria, can control the rate of initiation of coagulation of human blood plasma. On smaller patches (90 μm) spaced far apart (400 μm), coagulation was slow, initiating on the first patch in 9 min ± 1 with clotting on all the patches in the array in 22 ± 3 min (mean ± S.E.), indicating that the individual, 90 μm patches were below the size necessary to initiate coagulation rapidly (Fig. 1c). However, when the same number of bacteria were patterned closer together to form a large patch, coagulation initiated rapidly in 5 ± 1 min (mean ± S.E.) over the entire patch (Fig. 1d) (p-value < 0.01 in comparison to initiation on the first 90 μm patch, and < 0.005 in comparison to initiation on the entire set of patches).

B. cereus initiates coagulation of flowing whole blood

To test if *B. cereus* would initiate coagulation in the presence of flow, human whole blood was flowed over localized colonies of *B. cereus* in microfluidic channels (Fig. 2). Clusters of bacteria in microfluidic channels were made by encapsulating bacteria in gel microdroplets (GMDs). GMDs consisted of colonies of bacteria and magnetic particles 1 μm in diameter contained in agarose spheres approximately 50 μm in diameter; the magnetic particles allowed the GMDs to be trapped in the microfluidic channels by a magnet incorporated in the device near the channel (Fig. 2a). Clusters of *B. cereus* initiated coagulation of flowing human whole blood in 3–13 min (Fig. 2b,c), whereas coagulation did not occur until 48–59 min in experiments with the control strain of *E. coli* (Fig. 2d, p < 0.001).
Clusters of *B. anthracis* initiate coagulation in mice

We used a mouse model to test whether the correlation between clustering of *B. anthracis* and local coagulation was also observed in vivo. Mice were injected with *B. anthracis* vegetative bacteria, and then lung, heart, spleen, and liver tissues were harvested quickly (30 or 90 min) after the injection. Rapid harvesting was used to minimize initiation of coagulation by the immune response. After harvesting, histological sections of the mouse tissues were scored for the percentage of vessels showing fibrin clots. In the control experiment, two mice were injected with 10^4 bacteria per mouse; we hypothesized that clusters of bacteria would be less likely to form at such a low dose. In these control mice (Fig. 3a), no clusters of bacteria and no fibrin clots were observed in any tissue. Then, two mice were injected with a higher dose of 10^8 bacteria per mouse; we hypothesized that the formation of bacterial clusters would be more likely at this high dose. In the mice receiving 10^8 bacteria, clusters of *B. anthracis* were observed in the microvasculature of the lungs (Fig. 3b), but not in any other organs 30 min after the injection.

![Figure 3: Clusters of B. anthracis rapidly initiate coagulation in mice](image)

b) Clotted, bacterial clusters

Confinement regulates initiation of coagulation by tissue factor

Next, we hypothesized that bacteria could also initiate coagulation if sufficiently limited mass transfer caused active factors to accumulate above the local threshold concentration required for coagulation. Confinement—enclosing the source of diffusing molecules within a boundary that these molecules cannot cross—is a simple way to limit mass transfer. First, we tested in general whether confinement could affect the outcome of coagulation, by using microfluidics to confine microparticles carrying a classical stimulus, tissue factor (TF) (Fig. 4). We found that small TF-coated magnetic silica microparticles (“TF-carrying beads”) did not initiate clotting of human normal pooled plasma for over 40 min when in a less confining space ($160 \times 160 \mu m^2$ channels) (Fig. 1B) even when the beads were located close to a wall. However, equal-sized or even slightly smaller TF-carrying beads initiated clotting in under 10 min when trapped in a tightly confining space ($10 \times 10 \mu m^2$ channels) (Fig. 1C) ($N=5$ beads in 2 separate experiments, $p < 0.001$). This result indicates that TF-carrying beads smaller than threshold size did not initiate coagulation in a less confined environment, but did initiate coagulation when they were highly confined in a space with limited diffusion.
Coagulation of human plasma is a complex process that has been shown to exhibit a threshold response (on and off) to the concentration of soluble active coagulation factors such as thrombin. We hypothesized that the observed response to confinement was due to accumulation of soluble active factors, but it was possible that unknown interactions between the plasma and the device also played a role. To exclude this possibility, we tested whether the response to confinement could be predicted by a numerical simulation of TF-initiated blood clotting, using a set of 40 rate equations describing enzyme kinetics and stoichiometric inhibition in blood coagulation without surface interactions.

We used a simulation with geometry similar to that of the experimental microfluidic device and simulated the response of plasma to small regions, or patches, of 1 nM TF in either 10 µm or 160 µm wide channels (Fig. 5). This simulation was conducted in 2-dimensional space (2D) to reduce computational demands. The clot time was defined as the time at which fibrin reached half of its maximum concentration (i.e., at 4.15 µM fibrin). As predicted, patches of TF initiated the coagulation network quickly (~8 min) in confining channels, but not in the less confining channels (> 60 min). This finding agrees with the experimental results (Fig. 4) and confirms that coagulation kinetics and spatial constraints alone are sufficient to achieve the confinement effect.

Figure 4. Initiation of blood coagulation by TF-carrying beads is regulated by environmental confinement. (A) A schematic drawing shows the geometry of the experimental device containing channels of different sizes (cross sections of 160 x 160 µm², 40 x 40 µm², and 10 x 10 µm²) and TF-carrying beads (Red). (B,C) Initiation of coagulation by TF-carrying beads (red fluorescence) was monitored by using a fluorogenic substrate for thrombin. White dotted lines indicate channel walls of microfluidic device. (B) A representative TF-carrying bead did not initiate coagulation in a less confining channel (160 × 160 µm²). (C) A representative TF-carrying bead did initiate coagulation (blue) in a more confining channel (10 × 10 µm²). Linescans of fluorescent intensity along the green dashed line are given below the images.
Confinement regulates initiation of coagulation by bacteria GMDs

Having tested and described initiation of coagulation by TF in confined volumes, we then tested the hypothesis that confinement of bacteria could lead to coagulation of plasma in vitro. We tested whether a sub-threshold cluster of *Bacillus cereus* (*B. cereus*) could also initiate coagulation by limiting mass transfer of active factors using confinement. In these experiments, we placed human platelet poor plasma with sub-threshold size gel microdroplets (GMDs) carrying *B. cereus*, “bacteria GMDs”, in large microfluidic chambers with diameter of 9 mm and height of 1 mm and in small microfluidic channels with dimensions 40 x 40 µm² (Fig. 6). In less confining microfluidic chambers, active factors generated by individual bacteria GMDs were constantly removed by diffusion, and bacteria GMDs did not initiate coagulation for over 20 min (Fig. 6A); however, placing similarly-sized individual bacteria GMDs in confining microfluidic channels decreased the clot time to less than 10 min (Fig. 6B) (N = 3 beads in 3 separate experiments, p < 0.05). This result indicates that confining microfluidic channels limit the mass transfer of active factors generated by bacteria GMDs and allow active factors to accumulate locally above threshold concentration to initiate blood coagulation.

Figure 5. In 2-dimensional simulations of sub-threshold patches of TF (1 nM; radius r = 3 µm) placed in either confining or less confining channels of plasma, clotting initiated only in the confined space. (A) A schematic drawing shows the device design. (B,C) Plots show [thrombin]_{total}, the sum of [thrombin] and [meizothrombin], including both free and bound species, at t = 10 min. (B) In less confining (160 µm) channel, no coagulation was initiated at 10 min, and [thrombin]_{total} remained at a low level (blue). (C) In confining space (10 µm) containing a patch, clotting was initiated and [thrombin]_{total} increased to a high concentration (red). No clotting was initiated in the top channel (blue), which did not contain a patch of TF. Scale bars = 50 µm. The red dots in the schematic indicate patches of TF, and they are not drawn to scale.
Chemical Amplification with Threshold
To generate a threshold we decided to use a system with an enzyme, its inhibitor, and its substrate, in which the input is the enzyme and the output is the product of catalysis. A theoretical model was developed to predict in which case one can have a practical threshold. The existence of a practical threshold is generally defined as a big relative difference between the amount of output when the input is slightly below the threshold and that when the input is slightly above threshold. Explicitly, one can use two parameters α and γ to define the existence of practical threshold as

$$\text{Output}[(1+\alpha)\text{Threshold}] - \text{Output}[(1-\alpha)\text{Threshold}] \geq \gamma (\text{MaxOutput})$$

In the model, by letting the enzyme equilibrate with the inhibitor and subsequently allowing the unbound enzyme to catalyze the production of the product, the rate of production of the output is

$$\text{rate} = \frac{k_{\text{cat}}E_{\text{available}}S_0}{S_0 + K_M}$$

$$E_{\text{available}} = E_0 - \frac{1}{2}(E_0 + I_0 + K_D - \sqrt{-4E_0I_0 + (E_0 + I_0 + K_D)^2})$$

and a practical threshold exists when

$$\text{Threshold} = I_0 \geq K_D \frac{\gamma(\alpha\gamma + \gamma - \alpha)}{\alpha^2(1-\gamma)}$$

where E_0, I_0, and S_0 are initial concentration of the enzyme, inhibitor, and substrate, respectively, k_{cat} and K_M are Michaelis-Menten rate constants, K_D is the dissociation constant of the enzyme-inhibitor complex.
To check the validity of the above results, assays were performed with acetylcholinesterase (whose inhibitor is m-isopropyl-2',2',2'-trifluoroacetophenone, with K_D of 6.3 nM as determined by simple inhibitory assays) and thrombin (whose inhibitor is hirudin with K_D of 20 fM15). Reaction rates were normalized by the rate of the fastest reaction in the set. Equation (2) was used for theoretical data. Experimental initial rates were calculated from time trace of fluorescence intensity. Indeed, the theoretical model and experimental data agree well (Figure 7).

![Figure 7. Agreement between theory and experiment for A) acetylcholinesterase/ m-isopropyl-2',2',2'-trifluoroacetophenone (1.7x10$^{-7}$ M) and B) thrombin/hirudin (1.5x10$^{-9}$ M). Substrates for acetylcholinesterase and thrombin were indoxyl acetate (1.3x10$^{-5}$M) and (Boc-Asp(OBzl)-Pro-Arg-MCA (1.7x10$^{-5}$ M), respectively.]

Analog-to-Digital Conversion of Chemical Signal with Application for Diagnostics

We applied chemical amplification with threshold to converting analog chemical signals (e.g. concentration of a substance) into digital signals (a series of on/off reactions) that describes the analog signal. This conversion was achieved by subjecting the input concentration to different thresholds. From the on/off results of these tests, we can infer quantitative information about the input. A potential use of this technique is quantitation in resource-limited settings where traditional techniques such as absorption or fluorescence require unavailable extra equipment. Particularly, we applied this technique into an immunoassay for cystatin C, a biomarker of kidney function. We used SlipChip16 as the microfluidic platform for the assay because it...
accommodates multistep processing (required for the immunoassay) and multiplexing (required for the analog-digital conversion). The chemistry we developed uses acetylcholinesterase (AChE) as the reporter for the immunoassay, a 33-fM inhibitor to set up the threshold, acetylthiocholine as the substrate, and the starch/I complex that would react with the product to become clear to produce a visual readout (dark to clear). We first tested this chemistry in well plates (Figure 8). This chemistry allows for visualization of the signal by the naked eyes and recording the results with a consumer’s camera. We were able to distinguish 0.64 mg/L cystatin C (normal concentration) from 0.96 mg/L cystatin (stage 3 chronic kidney disease) in 5 µL serum as shown in Figure 9. The average difference in the number of incomplete reactions was 3, and the 95%-confidence interval was 0.9-5.1.

Figure 9. Detection of 1.5 fold change in concentration of cystatin C. (A) Unmodified picture of SlipChip (0.64 mg/L trial 3 at 55 minutes). (B) Distinguishing between 0.64 mg/L cystatin C (normal concentration) and 0.96 mg/L cystatin (stage 3 chronic kidney disease) in serum diluted 2 times in PBS buffer (pH 7, with Pluronic F127 1 mg/mL). 5 µL of sample in cystatin C-spiked serum was used for each trial. Each trial required 3 one-hour incubations: binding with the antibodies (one of which bound to beads and the remaining of which bound to biotin) followed by washing, binding with avidin-acetylcholinesterase followed by washing, and reaction with the inhibitor. The concentrations of the inhibitor droplets are shown in the figure, while the concentration of acetylthiocholine in the substrate mixture droplet was 1.0 mM. The pictures were taken after 55 minutes of the reaction (except for 0.96 mg/L cystatin C trial 2 which is presented at 40 min, at which point the reactions had already completed) with a standard digital SLR camera (Canon RebelXT with EFS18-55mm lens). The images were rotated and cropped with ImageJ, then adjusted with Photoshop (level change by setting a spot between wells 6 and 7 to be white, brightness+40, contrast+100), and masked to draw attention to the substrate area with Freehand.

Conclusions

This project has been successful in demonstrating that we can begin to understand the spatiotemporal dynamics of complex reaction networks by using a chemical model of a network that is based on a modular mechanism.

The results presented here demonstrate how local confinement of a small amount of stimulus, such as TF or clot-inducing bacteria, can dramatically alter the outcome of coagulation, a nonlinear reaction network with threshold kinetics. These results demonstrate that a simple physical phenomenon, accumulation of activators due to environmental confinement, can have nontrivial consequences when applied to a reaction system having threshold kinetics. We also demonstrated that we can observe a chemical threshold with an enzyme and an inhibitor. In
ongoing work, we are applying this threshold to detect particles (e.g. bacteria) in microfluidic devices with stochastic confinement. Thresholds abound in physiology, including thresholds seen in blood coagulation and activation thresholds in the immune system, so we expect confinement to play a role in many contexts. In ongoing work, we are investigating the use of thresholds for chemical amplification.

Publications supported by this award

Rebecca R. Pompano, Hung-Wing Li, and Rustem F. Ismagilov, "Rate of mixing controls rate and outcome of autocatalytic processes—theory and microfluidic experiments with chemical reactions and blood coagulation", *Biophysical Journal* 2008 95: 1531-1543

Meghan E. Vincent, Weishan Liu, Elizabeth B. Haney, and Rustem F. Ismagilov, "Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high

Feng Shen, Wenbin Du, Jason E. Kreutz, Alice Fok, and Rustem F. Ismagilov, "Digital PCR on a SlipChip", *Lab Chip* 2010 10:2666-2672

References:
(2) van'T Veer, C.; Mann, K. G., "Regulation of tissue factor initiated thrombin generation by the stoichiometric inhibitors tissue factor pathway inhibitor, antithrombin-III, and heparin cofactor-II" 1997, 272, 4367-4377.