Open Systems:
What’s Old Is New Again

Tricia Oberndorf & Dr. Carol Sledge
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
 APR 2010

2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
 Open Systems: What’s Old Is New Again

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA, 15213

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
 Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 51

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
- change print header/footer
- remove all student Notes (sub speaker notes)
- update agenda slide(s)

po, 3/16/2010
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.
Introduction
Open Systems: Product & Approach
Succeeding with Open Systems
Reprise: Open Systems Today
Technology is maturing faster.
Performance requirements are increasing.
Budgets first declined, now challenged.

But there’s a war.

Adjusted for inflation
Systems often have 30-50 year service lifetimes
Your way of doing business is changing.

Clinger-Cohen Act of 1996
DoDAF
McQueary memos
DoDI 5000.02:

8. MODULAR OPEN SYSTEMS APPROACH (MOSA). Program managers shall employ MOSA to design for affordable change, enable evolutionary acquisition, and rapidly field affordable systems that are interoperable in the joint battle space.

The latest acquisition reform

You are being asked to acquire systems more efficiently.
Open systems are part of your solution.
An open systems approach can help.

An open systems approach uses commercially available, widely accepted interface standards to bring commercial products from multiple vendors to bear in the weapons systems world.
Introduction

Open Systems: Product & Approach
Succeeding with Open Systems
Reprise: Open Systems Today
A system is
What is an open system?

open system

A collection of interacting components designed to satisfy stated needs with the interface specification of components

- fully defined
- available to the public
- maintained according to group consensus

in which the implementations of components are conformant to the specification.
Open systems emphasize interface specification
Open systems are based on standards

Standard

A publicly available document defining specifications for interfaces, services, protocols, or data formats, established and maintained by consensus.

Where do standards come from?

Standards are developed by industry, government, professional associations, consortia, and academia.
Size of community

- General Purpose
- Domain
- Specialized Domain
- Product Line
Sources of components

- Developmental Items
- Nondevelopmental Items
- Commercial Items

NDI
Openness vs. market acceptance

<table>
<thead>
<tr>
<th>Market Acceptance</th>
<th>Openness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widely Used</td>
<td>Consensus standards, many suppliers, buyers, users</td>
</tr>
<tr>
<td>Narrowly Used</td>
<td>Consensus standards, no products</td>
</tr>
<tr>
<td></td>
<td>Unique interfaces, optimized performance</td>
</tr>
<tr>
<td></td>
<td>Non-standards based popular products</td>
</tr>
</tbody>
</table>
Not all components have to be “open”
NDI \neq open

commercial \neq open

open source \neq open system

open \neq interoperable
Open systems is a new way of thinking about acquisition

<table>
<thead>
<tr>
<th>Traditional Approach</th>
<th>Open Systems Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define unique interfaces</td>
<td>Adopt standard interfaces</td>
</tr>
<tr>
<td>Develop components</td>
<td>Acquire components</td>
</tr>
<tr>
<td>Integrate components</td>
<td>Integrate components</td>
</tr>
<tr>
<td>Use & support the system</td>
<td>Use & support the system</td>
</tr>
</tbody>
</table>
How are you going to make the shift from producer to consumer?

Traditional Approach
- Define unique interfaces
- Develop components
- Integrate components
- Use & support the system

Open Systems Approach
- Adopt standard interfaces
- Acquire components
- Integrate components
- Use & support the system
Open system architecture

An open system architecture is an architecture in which the interrelationships of the components are defined by interface standards, and the architectural principles and guidelines are consistent with an open systems approach.
Leverage points for integration

You can gain leverage at different levels.

• component
• interface standards
• architecture
Point to point integration
Integration via interface standards

Standard

Component or subsystem
Integration via architecture
Gaining a systems perspective

Reference Model

Architectures

A₁, ..., Aₙ

Implementations

I₁, I₂, I₃, Iₘ, Iₘ₊₁, ..., Iₚ
An open systems approach

An open systems approach can be used to address your business concerns for improving the cost, schedule, and performance curves of your acquisition strategy.

An open systems approach creates a more evolvable system by capitalizing on these key elements

• a systems vision
• a common architecture
• the use of standards and standards-based implementations
Achieve acquisition efficiency by –

Reference Model

\[A_1 \rightarrow A_n \rightarrow I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow I_m \rightarrow I_{m+1} \rightarrow I_p \]

system perspective

making use of what exists

leveraging commercial economies of scale
The open systems approach is a tool, not a silver bullet.
Introduction

Open Systems: Product & Approach

Succeeding with Open Systems

Reprise: Open Systems Today
You are not the first
Programs that used elements of an open systems approach

Intelligence and Electronic Warfare Common Sensor (IEWCS)

Virginia Class Submarine (originally NSSN)

Multi-Sensor Torpedo Recognition and Alertment Processor (MSTRAP) System

Case studies for these exist and prove the advantages.
Other examples of use of the open systems approach

Joint Surveillance Target Attack Radar System (JSTARS) Common Ground Station (CGS) program

Navy Area Theater Ballistic Missile Defense (TBMD) (Block IVA) program

JSTARS

LPD 17

Joint Strike Fighter (F-35)
Remember the key changes

open system

A collection of interacting components designed to satisfy stated needs with the interface specification of components

- fully defined
- available to the public
- maintained according to group consensus

in which the implementations of components are conformant to the specification.
Engineering view of an open systems approach
Some realities

Myths of open systems, hype and media embellishment.

Technological changes can cascade.

Kind and frequency of testing can change.

Rate of change drives life-cycle costs.

Short half-life of technical and market information.

Extensions to standards can undermine openness.

Expectations of benefit without reasonable investment and execution.
Some Keys

Plan your transition
 • Assess the readiness of your staff, systems, and programs
 • Plan for change

Focus on people
 • Educate everyone involved

Plan the changes to your process
 • Start a pilot project - start small and learn as you go
 • Start a market research group

Communicate your systems vision

Build effective strategies
 • Consider alternative strategies for contracting
 • Chart the migration path to evolutionary systems
What should you be looking for?

So far we have talked about things for you to do.

How can you tell whether a program is really taking an open systems approach?
Use the engineering process for reviewing program plans

And require an implementation that is consistent with architecture and model
Make use of the MOSA PART

The Modular Open Systems Approach (MOSA) Program Assessment and Rating Tool (PART):

• intended for use by DoD Program Managers to assess their implementation of MOSA throughout the acquisition life-cycle

• an analytic tool to evaluate the degree that MOSA is implemented in a program

• presented in terms of five key MOSA indicators:
 – Enabling Environment
 – Modular Design
 – Key Interfaces
 – Open Standards
 – Conformance
Focus on program system vision, architecture, interfaces, and standards

Look for evidence of

• reference models
• market research
• architectures, components, and interfaces
• preparation to select standards
• selection of standards
• liaisons for selected standards
• liaisons with other programs
• profiles of selected standards
Create sound open systems RFPs

SOW (Section C)
- open system implementation and migration plan
- market research
- escrow accounts
- IPPD

Instructions to offerors (Section L)
- evidence of open systems experience and understanding
- opinions on profile
- their definition of open systems

Evaluation factors (Section M)
- open systems architecture
- life-cycle support strategy
- technology refreshment program
- adherence to an open systems approach
- opens systems management practices
- strength of market knowledge
Open systems testing

1. Conformance testing measures compliance to standards

2. Interoperability testing evaluates two or more interconnected product interfaces

3. Performance testing measures interface performance

4. Integration testing tests integration

Material adapted from material by Norman W. Kowalski of the Naval Undersea Warfare Center.
Open systems throughout the life cycle

<table>
<thead>
<tr>
<th>Material</th>
<th>Technology</th>
<th>Engineering</th>
<th>Production</th>
<th>O&S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Development</td>
<td>& Manufact.</td>
<td>and Deployment</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td>Development</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Open systems approach identified, detailed, and refined throughout the systems life cycle

Profiles and conformance testing approach declared and management mechanisms employed

Conformance process management and testing; interoperability and performance compatibility management

Material adapted from material by Norman W. Kowalski of the Naval Undersea Warfare Center.
Introduction
Open Systems: Product & Approach
Succeeding with Open Systems
Reprise: Open Systems Today
Effects of Current Technology Trends

Current technology trends, e.g., SOA, cloud computing

• Open systems helps/supports these

• But OSA/interface standards alone cannot resolve issues such as security

• There are still a lot of immature and competing standards
 – Takes time to mature a usable set of standards in such new areas
 – And technology keeps moving – can pass standards by
 • Need some level of stability + vendors providing conformant products
 • Standards exist in a business environment – must balance stability and innovative advances

• Another implication: There could be an inability to consider a standard because the only implementations are from a potentially untrustworthy nation
What About Disruptive Technologies?

What makes something disruptive?

• It’s new, so everyone wants it in play quickly
• So it will probably go against (some of) the standards you are using.

It may be a *necessity* to change to some new technology to counter some new threat – “the soldiers will just do it”

• An open, flexible overarching architecture will help, as opposed to stove-piped, stodgy, closed
• Also provides underlying stability on which new innovative things can build
• A disruptive technology is unlikely to unseat EVERYTHING you are using, at least not at first

Constant vigilance gives you the basis for informed decision-making, *based on your open systems architecture*.
For Additional Information

Patricia Oberndorf
Carol A. Sledge

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Voice: 412 / 268-6138 (po)
 412 / 268-7708 (cas)
FAX: 412 / 268-5758

Email: po@sei.cmu.edu
cas@sei.cmu.edu

www.sei.cmu.edu/