Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>APR 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2010 to 00-00-2010</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Modeling, Simulation and Analysis for Life Cycle Decision Making</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Sandia National Laboratories, Albuquerque, NM, 87185</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>14</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

- Motivation for Modeling, Simulation and Analysis (MSA) for Life Cycle Decision Making
- Sandia’s System of System Analysis Toolset
- MSA during different Life Cycle Phases
 - Design Phase
 - Fielding Phases
 - Program Improvement Phases
 - Recap/Reset/Retirement Phase
- Conclusions
Motivation for Life Cycle MSA

- Too often MSA efforts throughout a program lifecycle are disjoint and adhoc
 - MSA efforts become difficult and costly
 - Long-term benefit of life cycle MSA reduced

Benefits of Life Cycle MSA
- Initial model development investment is leveraged across lifecycle
- Model accuracy is increased as life cycle phases progress

MSA can assist decision makers in:
 - Setting feasible design requirements
 - Mission and logistics planning
 - Force structure configuration
 - Recap/Reset/Retirement decision making
System of Systems Analysis Toolset (SoSAT) Background

- SoSAT (System of Systems Analysis Toolset) is a suite of software tools:
 - State Model tool
 - Stochastic simulation tool
 - Advanced data visualization tools
 - Reliability, spares, and supply optimization tools

- Initially designed to provide DoD and supporting organizations the capability to analyze a System–of–Systems (SoS) and its various platforms:
 - Supporting multiple US Army Future Combat Systems (FCS) trade studies
 - Influencing military system design decisions
 - Performing Assessment of Sustainment/Reliability Key Performance Parameters
 - Operational Availability (Ao)
 - Self–Sustainment (Spares, Ammo, Water, Fuel)
 - Footprint Reduction
 - US Army Program Executive Office of Ground Combat Systems (PEO GCS) is using SoSAT for Fleet Management and Modernization Planning initiative
 - Participating in formal Verification, Validation & Accreditation effort with Army Organizations

SoSAT Simulation v2.0 Released February 2010
SoSAT Capabilities

- SoSAT provides analysts the capability to:
 - Simulate *any or all* of a system of systems (SoS) organizational structure
 - Simulate multiple mission segments for a SoS
 - Provide data to assess SoS performance objectives
 - Support business decisions and trade-offs

- Basic Modeling Features
 - System element reliability failures
 - Consumable usage and depletion
 - Maintenance activities including any required spares or services
 - Supply reorder for consumables and spare inventories

- Advanced Modeling Features
 - Combat Damage Modeling
 - Network Modeling
 - Prognostics and Health Management
 - Time-Based changes to model attributes (External Conditions)
 - System Referencing (interdependencies)

- Active Model Development
 - Network & human modeling capability
 - Enterprise Modeling incorporation
Design Phase MSA

- Evaluate system’s ability to meet performance specifications and requirements, such as:
 - Operational Availability (Ao)
 - System maintainability and reliability
 - Cost

- Develop initial system of systems models
 - Leverage this investment throughout life cycle

- Use MSA to validate feasibility of design requirements

- Example: Maintainability Requirement
Objective: Quantify impacts of not meeting the maintainability requirement for manned vehicles

Metrics of Interest
- Functional Availability over time
- Time to recover after mission

Model Scenarios
- Single mission followed by long recovery
- Multiple missions with short recovery followed by long recovery

Major factors influenced by design
- Reliability
- Maintainability
- Time to repair

Other factors outside of design control
- Spare availability
- Number of maintenance resources
- Competition for resources by other platforms
- Platform utilization
Fielding Phases

- MSA can assist in evaluating Operational Availability of fielded systems using existing models for:
 - Mission planning
 - Force structure configuration
 - Logistics planning

- Update models based on deployment strategies and field data
 - Fine tune model in terms of logistics supply chain, troop and system deployment decisions

- Example: Consumable Distribution Analysis
Objective: Determine number and location of distribution resources to sustain organization over mission
- Minimize consumables within organization
- Minimize distribution platforms
- Evaluate distribution concepts of operations
- Include reliability effects

Model Scenarios
- Single mission
- Baseline – original distribution structure
- Restructured – same number of distribution resources with different distribution locations

Study Findings
- Reliability and sustainment of distribution resources can have a large impact
- Variable consumption rates over mission should be included to examine distribution performance
Program Improvement Phases

- Continuous pressure to improve performance of fielded systems is a reality
- There is a desire to reap potential benefits by deploying new technology advances
- MSA can assist decision makers in evaluating the effect deployment of new technologies will have on fielded systems
- Example: Engine upgrade evaluation
This example measures a new 100 mile fuel range engine against a 150 mile range engine. Each engine is analyzed with varied changes in tank size and fuel efficiency. Availability and fuel consumption are the metrics used for this analysis.

Goal: Evaluate new engine technology against operational metrics
Retirement Phase

- MSA can assist decision makers in determining which systems to remove from field operations by evaluating contribution of system on overall SoS performance
 - Quantitative analysis of various performance attributes across the fleet of vehicles
 - Qualitative assessments of relative importance of each performance attribute
- Optimization and planning tools can also assist in formulating a retirement schedule
- Example: Fleet Management Analysis
Fleet Management Analysis

- **Objective**: Develop analysis framework to support decisions concerning the management of a large fleet of vehicles
- Use MSA to evaluate vehicle/fleet performance parameters
 - Maintainability
 - Availability
- Multi-objective fleet management optimization
 - Proper fleet composition and allocation for future requirements
 - Decisions about vehicle recap/reset/retirement
- Model constraints
 - Budget
 - Force structure requirements
 - Theatre or mission requirements
 - Vehicle Performance requirements
- Key Outputs
 - Number of vehicles by type to purchase or recap/reset/retire over time
 - Allocation of vehicles to theaters or missions based on performance
Conclusions

- Benefits from early investment in model development and MSA are gained throughout a system’s life cycle.
- MSA can save millions by helping to set realistic design requirements.
- Continuous model refinement and use of simulation and analysis during system field use provides on-going benefits.
- MSA can further assist decision makers by providing quantitative evidence to support program improvement and phase-out decisions.