TA5 Project 5.3

Amandeep Singh¹, Igor Baseski¹,²
¹U.S. Army, RDECOM TARDEC;
²Ph.D. Student, Oakland University

Zissimos P. Mourelatos, Jing Li
Mechanical Engineering Department
Oakland University
Rochester, MI 48309, USA
ACCELERATED TESTING AND PREVENTIVE MAINTENANCE IN ACQUISITION, MAINTENANCE AND OPERATION OF VEHICLE SYSTEMS USING TIME-DEPENDENT RELIABILITY/DURABILITY PRINCIPLES

Author(s): Amandeep Singh; Igor Baseski; Zissimos Mourelatos; Jing Li

Performing Organization: Oakland University, Mechanical Engineering Department, Rochester, MI, 48309

Sponsoring/Monitoring Agency: U.S. Army TARDEC, 6501 E. 11 Mile Rd, Warren, MI, 48397-5000

DISTRIBUTION/AVAILABILITY: Approved for public release; distribution unlimited

SUPPLEMENTARY NOTES: Automotive Research Center (ARC) Conference briefing

ABSTRACT: N/A

SUBJECT TERMS:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

LIMITATION OF ABSTRACT: Same as Report (SAR)

NUMBER OF PAGES: 38

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Army Needs in Reliability, Maintenance and Logistics

- Reduce operations and maintenance costs
- Increase effectiveness of fleet logistics
- Control lifecycle cost and also use it in design and procurement
- Improve availability; schedule maintenance
- Use both analytical and experimental / field data to estimate reliability
Random Process leads to Time-Dependent Reliability
Research Statement

Develop methodologies to obtain a **preventive maintenance schedule** and to assess and improve the **reliability / durability** of vehicle systems using

- Experimental (field) data
- “Expert” opinion
- Predictive tools (physics-of-failure data)

Previously and currently at TARDEC

Current research
Overview

Part 1:

Optimal preventive maintenance schedule using time-dependent reliability and lifecycle cost

Part 2:

Accelerated testing method based on importance sampling using few tests which run for only a short time
Part 1: Optimal Preventive Maintenance Schedule
What is Reliability?
Cumulative Probability of Failure

Reliability at time \(t \) is the probability that the system has not failed before time \(t \).

\[
F_T^c(t_L) = P(\exists t \in [0, t_L], \text{such that} \ g(X(t), t) \leq 0)
\]

Cumulative Prob. of Failure

\[
F_T^i(t_L) = P(g(X(t_L), t_L) \leq 0)
\]

Instantaneous Prob. of Failure

Calculation Methods for \(F_T^c(t) \)

- Maximum Response Method
- Niching GA & Lazy Learning Local Metamodelling
- MCS / Importance sampling

\[
F_T^c(t) = 1 - \exp \left[- \int_0^t \lambda(t) \, dt \right]
\]
Definition of Lifecycle Cost

Lifecycle Cost = Production Cost + Inspection Cost + Expected Variable Cost

Quality

Time-Dependent System Reliability
Definition of Lifecycle Cost

\[C_L(d, X, t_f, r) = C_P(d, X) + C_I(d, X, t_0) + C_V^E(d, X, t_f, r) \]

- **Lifecycle Cost**
- **Production Cost**
- **Inspection Cost**
- **Expected Variable Cost**

\[C_V^E(d, X, t_f, r) = \int_{0}^{t_f} c_F(t) e^{-rt} f_T^c(t) dt \]

- Final time
- Interest rate
- Cost of failure at time \(t \)
- PDF of time to failure time

\[F_T^c(t_L) = P(\exists t \in [0, t_L], such\,\, that\,\, g(X(t), t) \leq 0) \]
Preventive Maintenance Schedule

Estimation of Time for Preventive Maintenance

\[
\begin{align*}
\max_{d, \mu_X, \sigma_X, t_M} & \quad t_M \\
\text{s. t.} & \quad C_L(d, \mu_X, \sigma_X, t_M, r) \leq C_L^t \\
& \quad F_T^c(d, X, t_M) \leq 1 - R^t(t_M) \\
& \quad d_L \leq d \leq d_U \\
& \quad \mu_{X_L} \leq \mu_X \leq \mu_{X_U} \\
& \quad \sigma_{X_L} \leq \sigma_X \leq \sigma_{X_U}
\end{align*}
\]
A Roller Clutch Example

Constraints:

- Contact angle $\alpha = 0.11 \pm 0.06 \text{ rad}$
- Torque $\tau \geq 3000 \text{ Nm}$
- Hoop stress $\sigma_h \leq 400 \text{ MPa}$

Random Variables: D, d, A

Due to degradation:

$D \rightarrow D(1 - kt)$

$d \rightarrow d(1 - kt)$

$A \rightarrow A(1 + kt)$

with: $k = 2.5E-04 \text{ mm/ year}$

$$g_1(D,d,A) = 0.05 - \cos^{-1}\left(\frac{D-d}{A-d}\right) \leq 0$$

$$g_2(D,d,A) = \cos^{-1}\left(\frac{D-d}{A-d}\right) - 0.17 \leq 0$$

$$g_3(D,d,A) = 3000 - NL\left(\frac{\sigma_c}{c_1}\right)^2 \frac{D^2d}{4(D+d)} \sqrt{1 - S^2} \leq 0$$

$$g_4(D,d,A) = \frac{N}{2\pi}\left(\frac{\sigma_c}{c_1}\right)^2 \left(\frac{Dd}{(D+d)}\right) S \left(\frac{B^2 + A^2}{A\left(B^2 - A^2\right)}\right) - 400E06 \leq 0$$
Roller Clutch: Lifecycle Cost

\[C_L = C_P + C_I + C^E_V \]

where:

\[C_P = \left(3.5 + \frac{0.75}{3\sigma_D} \right) + \left(3.0 + \frac{0.65}{3\sigma_d} \right) + \left(0.5 + \frac{0.88}{3\sigma_A} \right) \]

\[C_I = 20F^i_T(X, t_0) \quad \text{Scrap cost/unit} \]

\[C^E_V = \int_0^{t_f} 20e^{-rt} f^c_T(t)dt \quad \text{Failure cost/unit (warranty cost)} \]

\[t_f = 10 \text{ years} \quad r = 3\% \]
Roller Clutch: Reliability vs Time-to-Maintenance

System Reliability vs Time

- Initial design
- Optimal design

Maximum t_M limited by side constraints

$t_M = 7.01$ years
$t_M = 12.77$ years

$R_i = 0.9$

$C_L^t = \$18$
$C_L^t = \$19$
$C_L^t = \$20$
$C_L^t = \$21$
$C_L^t = \$22$
$C_L^t = \$23$
$C_L^t = \$24$
$C_L^t = \$25$
$C_L^t = \$26$
$C_L^t = \$27$
$C_L^t = \$28$
Roller Clutch: Pareto Optimality between Time-to-Maintenance and Cost

Target Lifecycle Cost vs Time for Maintenance

Maximum t_M limited by side constraints

$t_M = 12.77$ years
Roller Clutch: Pareto Optimality between Time-to-Maintenance and Cost

Design Variables:

\[\boldsymbol{\mu}_X = \{\mu_D, \mu_d, \mu_A\} \quad \sigma_X = \{\sigma_D, \sigma_d, \sigma_A\} \]

Side Constraints:

\[
\begin{align*}
55.0973 & \leq \mu_D \leq 55.4973 \\
22.66 & \leq \mu_D \leq 23.06 \\
101.49 & \leq \mu_A \leq 101.89 \\
0.04 & \leq \sigma_D \leq 0.08 \\
0.03 & \leq \sigma_d \leq 0.1 \\
0.07 & \leq \sigma_A \leq 0.113
\end{align*}
\]

<table>
<thead>
<tr>
<th>(c_L^t)</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_D)</td>
<td>55.4946</td>
<td>55.4973</td>
<td>55.4973</td>
<td>55.3822</td>
<td>55.4973</td>
<td>55.4973</td>
<td>55.4973</td>
<td>55.4973</td>
<td>55.4973</td>
<td>55.4973</td>
<td>55.4973</td>
</tr>
<tr>
<td>(\mu_d)</td>
<td>22.7562</td>
<td>22.7735</td>
<td>22.7867</td>
<td>22.8535</td>
<td>22.8071</td>
<td>22.8146</td>
<td>22.8208</td>
<td>22.8259</td>
<td>22.8296</td>
<td>22.8315</td>
<td>22.8316</td>
</tr>
<tr>
<td>(\sigma_D)</td>
<td>0.08</td>
<td>0.08</td>
<td>0.0771</td>
<td>0.0693</td>
<td>0.0661</td>
<td>0.0593</td>
<td>0.054</td>
<td>0.0496</td>
<td>0.0423</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>(\sigma_d)</td>
<td>0.0639</td>
<td>0.0543</td>
<td>0.0481</td>
<td>0.0449</td>
<td>0.0407</td>
<td>0.0368</td>
<td>0.0334</td>
<td>0.0306</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>(\sigma_A)</td>
<td>0.1107</td>
<td>0.0946</td>
<td>0.084</td>
<td>0.0763</td>
<td>0.0701</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Part 2: Accelerated Testing using Importance Sampling
Problem Description

Vehicle speed: 20 mph; Mission distance: 100 miles

Simulation can be practically performed for a short-duration time
A novel MC-based method to calculate the time-dependent reliability (cumulative probability of failure) based on:

- short-duration data and an exponential extrapolation using MCS or Importance Sampling (Infant Mortality)
- Poisson’s assumption (Useful Life)
Exponential Extrapolation

\[\hat{\lambda}(t) \approx \lambda_0 e^{-bt} \]

The Bathtub Curve

- Hypothetical Failure Rate versus Time
- Increased Failure Rate
- Normal Life (Useful Life)
- Low "Constant" Failure Rate
- End of Life Wear-Out
- Increasing Failure Rate

Poisson’s Assumption

\[F_T^c(t) = \begin{cases}
-\int_0^t \hat{\lambda}(t)\,dt, & t \in [0, t_{int}] \\
1 - e^{-\int_0^t \hat{\lambda}(t)\,dt}, & t \in [t_{int}, t_f] \\
1 - (1 - F_T^c(t_{int})) e^{-\nu_m(t-t_{int})}, & t \in [t_{int}, t_f]
\end{cases} \]
Poisson Assumption

\[F_T^c(t_{\text{min}}, t) = 1 - (1 - F^i(t_{\text{min}}))e^{-m_1} \]

where:

\[m_1 = E[N^+(t_{\text{min}}, t)] = \int_{t_{\text{min}}}^{t} \nu^+(t) \, dt = \nu_m(t - t_{\text{min}}) \]

Number of out-crossings

\[\nu^+(t) = \lim_{\Delta \tau \to 0, \Delta \tau > 0} \frac{P[g(d, X, t) > 0 \cap g(d, X, t + \Delta \tau) \leq 0]}{\Delta \tau} \]

Out-crossing rate
Quarter-Car Model on Stochastic Terrain

Constant design parameters:
\[m_s = 1000 \text{ kg} \]
\[m_u = 100 \text{ kg} \]
Vehicle speed = 20 mph

Random Input variables
Damping, \(b_s \sim N(7000,1400^2) \)
Stiffness, \(k_s \sim N(40 \times 10^3,(4 \times 10^3)^2) \)

Random Input Process: Experimental Stochastic Terrain from Yuma Proving Grounds.

Random Output Process:
(Vertical Acceleration, G’)
Threshold = 2G
AR(3) model was identified based on:

Autocorrelation Function

Sample Autocorrelation Function (ACF)

Lag
Sample Autocorrelation

-0.2
0
0.2
0.4
0.6
0.8
1
0
10
20
30
40
50

Autocorrelation of Residual process

Sample Autocorrelation Function (ACF)

Lag
Sample Autocorrelation

-0.2
0
0.2
0.4
0.6
0.8

\[u_i = 1.2456 \, u_{i-1} - 0.2976 \, u_{i-2} - 0.1954 \, u_{i-3} + \varepsilon_i(0, \, 0.5132^2) \]

Statistical tests were performed to verify the model
Quarter-Car Model: Results
(Failure Rate Estimation for Threshold = 2G)

Estimated parameters:
\[\lambda_0 = 0.1708 \]
\[b = 0.0818 \]

Estimation requires **short duration** MCS

Exponential extrapolation

\[\hat{\lambda}(t) \approx \lambda_0 e^{-bt} \]
Quarter-Car Model: Results
Cumulative Probability of Failure for Threshold = 2G

Efficient MCS (blue) approach is close to true MCS results (red)
Principle of Importance Sampling: Random Variable Case

Feasible Region

\[g_1(x_1, x_2) = 0 \]

\[g_2(x_1, x_2) = 0 \]

Increased Performance

Reliable Optimum

\[f(x_1, x_2) \] contours
Importance Sampling for Random Process

Instantaneous **Conditional** Probability of Failure:

\[p_f^\lambda(t_i) = \int_{\Omega} \theta(x; t_i) f_x(x; t_i) dx \]

\[x = \{x_1, x_2, \ldots, x_i\} \text{ where } x_i \text{ is a realization of R.V. } X_i = X(t_i) \]

\[p_f^\lambda(t_i) = \int_{\Omega} \theta(x; t_i) \frac{f_x(x; t_i)}{f_{x^s}(x; t_i)} f_{x^s}(x; t_i) dx \]

Sampling Joint PDF

\[p_f^\lambda(t_i) = \frac{\sum_{n=1}^{N_{f}(t_i)} \theta(x; t_i) \omega(x, t_i)}{N_S(t_{i-1})} = \frac{\sum_{n=1}^{N_f(t_i)} \omega(x, t_i)}{N_S(t_{i-1})} \]
Importance Sampling for Random Process

\[
P_f^\lambda(t_i) = \frac{\sum_{n=1}^{N_s(t_{i-1})} \theta(x; t_i) \omega(x, t_i)}{N_s(t_{i-1})} = \frac{\sum_{n=1}^{N_f(t_i)} \omega(x, t_i)}{N_s(t_{i-1})}
\]

\[
\lambda(t_i) = \lim_{\Delta t \to 0} \frac{p_f^\lambda(t_i)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\sum_{n=1}^{N_f(t_i)} \omega(x, t_i)}{\Delta t \cdot N_s(t_{i-1})}
\]

\[
\omega(x, t_i) = \frac{f_x(x; t_i)}{f_{xS}(x; t_i)} : \text{Likelihood ratio at } t_i
\]

\[
N_s(t_{i-1}) : \text{Safe sample points at } t_{i-1}
\]

\[
N_f(t_i) : \text{Number of failures in } \Delta t = t_i - t_{i-1}
\]
Likelihood ratio:

\[
\omega(x; t_i) = \frac{f_X(x; t_i)}{f_X^S(x; t_i)} = \frac{f_X(x_i, x_{i-1}, \ldots, x_{i-d})}{f_X^S(x_i, x_{i-1}, \ldots, x_{i-d})}
\]

Decorrelation length: Maximum number of lags over which realizations of \(x_i\) are significantly correlated

\[
x_i - \mu = \phi_1(x_{i-1} - \mu) + \phi_2(x_{i-2} - \mu) + \ldots + \phi_p(x_{i-p} - \mu) + \epsilon_i(N(0, \sigma^2_s))
\]

To generate sampling PDF

\[
f_X(x) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)
\]

From Yule-Walker Eqs
Estimation of Safe Sample Functions

\[\lambda(t_i) = \lim_{\Delta t \to 0} \frac{\sum_{n=1}^{N_f(t_i)} \omega(x, t_i)}{\Delta t \cdot N_S(t_{i-1})} \]

\[\frac{\sigma_e}{\sigma_S} x_f > S_{\text{threshold}} \]

“Inflated” response
Quarter-Car Example

\[u_i = 1.2456u_{i-1} - 0.2976u_{i-2} - 0.1954u_{i-3} + \varepsilon_i (0, 0.5132^2) \]

Original PDF \(\sigma_e = 0.51 \)

Sampling PDF \(\sigma_s = 0.7 \)

The sampling PDF results in more failures
Quarter-Car Example

Sample Autocorrelation Function (ACF)

Sample Autocorrelation

Lag

\(d = 7 \)

UNCLASSIFIED
Quarter-Car Example

Stationary Case

- ECS 1,500,000 samples
- IS 10,000 samples
Quarter-Car Example

Stationary Case

![Graph showing failure rate over time for different scenarios with varying parameters.]

- **MCS**
- **IS, d=7**
- **IS, d=12**
- **IS, d=6**
- **IS, d=5**

Stationary Case - Quarter-Car Example
Quarter-Car Example

Non-Stationary Case

Threshold = 2 g

Threshold = 2.65 g
Observations / Practical Issues

- Analytical methods can be used under the Poisson’s assumption.
- IS at initial time may need a few thousand output sample functions.
Ongoing Work Plan

- Improve the current accelerated testing method based on importance sampling so that only 5-10 tests are needed (Q3)
 - Characterize the “inflated” output random process in importance sampling using “generalized” Kriging and MLE and/or time series

- Demonstrate the accelerated testing methodology using the N-post (or 4-post) Reconfigurable Road Simulator of the Physical Simulation Laboratory at TARDEC (Q3 and Q4)
TARDEC N-post Reconfigurable Road Simulator
Thanks for your attention!

Q & A

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.