Camp Beale Live-Site UXO Data Inversion and Classification Using Advanced EMI Models

Fridon Shubitidze, Sky Research/Dartmouth College

Co-Authors:

Irma Shamatava, Sky Research, Inc
Jon Miller, Sky Research, Inc
Joe Keranen, Sky Research, Inc
Alex Bijamov, Dartmouth College
Benjamin Barrowes, ERDC-CRREL
Abstract

The advanced EMI and statistical classification models are applied to the cued data sets of the Metal Mapper and two next-generation portable sensors: MPV and 2x2 3D TEMTADS. The advanced models combine: (1) the joint diagonalization (JD) algorithm for estimating the number of potential anomalies from the measured data without inversion, (2) the orthonormalized volume magnetic source (ONVMS) model for representing the EMI responses and extracting the intrinsic parameters (feature vector) of the targets, and (3) the Gaussian Mixture algorithm that utilizes the extracted features to classify buried objects as targets of interest (TOI) or not. The inversion and classification schemes of these advanced models consist of the following steps: (i) build the multi-static-response (MSR) data matrix by combining the Tx and Rx data points of the advanced sensors; (ii) apply the JD to the MSR data matrix to determine its eigenvalues; (iii) estimate the data quality and the number of potential targets, based on the eigenvalues; (iv) study the temporal decay of the eigenvalues to identify the signal to noise ratio (SNR); (v) invert all data sets using the ONVMS-Differential Evolution algorithm; (vi) apply the semi-supervised GM clustering algorithm to the inverted total ONVMS to determine the clusters of anomalies; (vii) select anomalies from each cluster to build a custom training list (viii) request the ground truth for the selected targets; (ix) use the obtained ground truth to score the unknown targets using the GM weights for the ONVMS clusters; and (x) submit the final dig-list to the ESTCP office for independent scoring. In this presentation the data inversion processing and discrimination schemes of the advanced EMI models will be reviewed, and the classification results scored by the Institute for Defense Analyses (IDA) will be presented for Camp Beale, CA cued data sets of both MM and portable EMI sensors.
<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
CAMP BEALE LIVE-SITE UXO DATA INVERSION AND CLASSIFICATION USING ADVANCED EMI MODELS

PROFESSOR FRIDON SHUBITIDZE
Dartmouth College and Sky Research
8000 Cummings Hall, HB 8000
Hanover, NH 03755
(603) 646-3671
fridon.shubitidze@dartmouth.edu

CO-PERFORMERS: Irma Shamatava, Jon Miller, and Joe Keranen (Sky Research);
Alex Bijamov (Dartmouth College), Ben Barrowes (ERDC-CRREL)

The advanced EMI and statistical classification models are applied to the cued data sets of the Metal Mapper and two next-generation portable sensors: MPV and 2x2 3D TEMTADS. The advanced models combine: (1) the joint diagonalization (JD) algorithm for estimating the number of potential anomalies from the measured data without inversion, (2) the orthonormalized volume magnetic source (ONVMS) model for representing the EMI responses and extracting the intrinsic parameters (feature vector) of the targets, and (3) the Gaussian Mixture algorithm that utilizes the extracted features to classify buried objects as targets of interest (TOI) or not. The inversion and classification schemes of these advanced models consist of the following steps: (i) build the multi-static-response (MSR) data matrix by combining the Tx and Rx data points of the advanced sensors; (ii) apply the JD to the MSR data matrix to determine its eigenvalues; (iii) estimate the data quality and the number of potential targets, based on the eigenvalues; (iv) study the temporal decay of the eigenvalues to identify the signal to noise ratio (SNR); (v) invert all data sets using the ONVMS-Differential Evolution algorithm; (vi) apply the semi-supervised GM clustering algorithm to the inverted total ONVMS to determine the clusters of anomalies; (vii) select anomalies from each cluster to build a custom training list; (viii) request the ground truth for the selected targets; (ix) use the obtained ground truth to score the unknown targets using the GM weights for the ONVMS clusters; and (x) submit the final dig-list to the ESTCP office for independent scoring. In this presentation the data inversion, processing and discrimination schemes of the advanced EMI models will be reviewed, and the classification results scored by the Institute for Defense Analyses (IDA) will be presented for Camp Beale, CA cued data sets of both MM and portable EMI sensors.
Camp Beale TOI

Main TOI

Goals:
1. Identify all TOIs.
2. Assess technology.
3. Keep at least 75% non-TIOs in ground

Fuze and Fuze-parts as TOI
Challenges at CBE

- Magnetic soil noise.
- Small S/N ratio.
- TOI types: There were six types of main TOIs and eight types of native TOIs.
- There were only a few (1 to 5) fuzes of the same size;
- Small size (3cm and 5 cm) unexpected native fuzes as TOI.
- Multi Targets
UXO classification

The entire UXO classification process can be divided into three parts:

1. Data Acquisition
 - Metal Mapper
 - MPV
 - 2x2 Array
 - Hand Held BUD

2. Feature extraction

3. Decision
 - Feature selection
 - Clustering and Classification

Forward Operator
\[d = F[p] \]
Inverse Operator
\[p = F^{-1}[d] \]
Forward Models

Multi dipole mode

The scattered EMI field is approximated as superposition of magnetic fields from each individual dipole, using the dyadic Green’s function:

\[
H(r) = \sum_{i=1}^{N_i} \overline{G}_i(r) \cdot m_i
\]

where

\[
\overline{G}_i(r) = \frac{1}{4\pi R_i^3} \left(3 \overline{R}_i \overline{R}_i - \bar{I} \right) ; \quad \overline{R}_i = r_i - r
\]

ONMVS

The scattered EMI field is approximated as magnetic field from groups of interacting dipoles using an orthonormalized function expansion:

\[
H(r) = \sum_{q=1}^{Q} \overline{\psi}_q(r) \cdot b_q,
\]

where

\[
\overline{\psi}_q(r) = \overline{G}_q(r) - \sum_{k=1}^{q-1} \overline{\psi}_k(r) \cdot \overline{A}_{qk};
\]
Forward Models

Multi dipole mode

- \mathbf{m}_i are determined from the measured data by solving a linear system of equations.
- Uses individual dipole polarizabilities for classification

ONMVS

- First it determines \mathbf{b}_q from the measured data without solving a linear system of equations, then it backs out \mathbf{m}_i.
- Uses total ONVMS/effective polarizabilities for classification
Inverted total ONVMS for different objects at CBE-MM data

105 mm HEAT

81 mm

60 mm

37 mm

ISO

Horse shoes
QC using Joint Diagonalization

Build a Multi Static Response (MSR) data matrix $[W]$ as:

$$[W](t_k) = \left[H^T(t_k) \right] \cdot \left[H(t_k) \right], \ k=1, 2, \ldots, N_t$$

Time Channels $1:N_t$

Represent MSR data matrix $[W]$ in Space-Time

The goal is to:

- determine the eigenvalues of $[W]$ matrix for each time channel.
- find an eigenvector V that will be shared by all matrices.

$$D(t_k) = V^T [W(t_k)] V, \ k=1, 2, \ldots, N_t$$
Training data selection

Choose discrimination features:
size and decay

Cluster the discrimination features

Identify an anomaly from each cluster, build a custom training list.
Camp Beale MPV Classification Approach

- Invert all data for one, two and three targets;

- Create custom training data using a statistical clustering (for example Matlab function “clusterdata”, with “Ward Linkage”) and time decay curves of the inverted ONVMS.

- Request Custom training data and update TOI library.

- Invert as N=4, 5 targets, if necessary.

Three targets inversion for cell #758

CASE-758

Library target
At CBE MPV2 suffered from magnetic soil. This was mostly due to the deployment strategy, i.e. the sensor was placed on the ground.

The ONVMS technique was able to model the magnetic soil’s EMI responses as a response from a target. The technique extracted the real target features from the noisy data.
Camp Beale MPV Classification results

- 95 anomalies were requested for custom training, out of those 16 were TOI and 79 were scrap.
- All available MPV2 data were inverted and analyzed.
- No False Negatives: all TOI, total 124 = 89 (UXO) + 35 (Fuzes), were indentified correctly.
- 200 holes with clutter dug,
- 587 holes with clutter were not dug. i.e. ~75% of non-TOI left in the ground.
Camp Beale 2x2 Array Classification Approach

- Conduct data QC using the JD technique, determine the number (N) of potential targets.

- Invert all data as N targets, with N is estimated from the JD.

- Create custom training data using a statistical clustering, and eigenvalues time decay curves.

- Request Custom training data and update TOI library.

- Invert all data as more than N targets, if necessary.

The JD eigenvalue analysis indicated that cell #758, contained more than one targets and signal from a target was highly disturbed, therefore the cell was included in the training data.
Camp Beale 2x2 Array Classification results

- 98 anomalies were requested for custom training, out of those 24 were TOI and 74 were scrap.
- All available 2x2 array data were inverted and analyzed.
- No False Negatives: all TOI, total of $124 = 89$ (UXO) + 35(Fuzes), were indentified correctly.
- 191 holes with clutter dug,
- 596 holes with clutter were not dug. i.e $\sim 76\%$ of non-TOI left in the ground.
Camp Beale CH2MHILL MM Classification results

- 132 anomalies were requested for custom training, out of that 25 were TOI and 107 were scrap.

- All available CBE CH2MHILL data were inverted and analyzed.

- No False Negatives: all TOI, total 170 = 137 (UXO) + 33(Fuzes), were indentified correctly.

- 183 Holes with clutter dug,

- 1117 holes with clutter were not dug. i.e ~86 % of non-TOI left in the ground.
Camp Beale Parsons MM Classification results

Obtained by Sky Research Production team:

Step 1:

- Used test pit data collected at site to establish feature libraries (grey lines) for potential TOI
- Plotted anomaly total ONVMS (green, blue, black lines) against feature libraries to identify high probability TOIs (37mm shown in red outline)
Step 2: Identify the anomalies

- Identified “suspicious” anomalies that did not match feature library responses
- Requested ground truth for select group of possible TOIs
- Discovered two TOI fuze types and two clutter types (horseshoe and survey nail)
- Added the new TOI and clutter polarizabilities to the feature library
Camp Beale Parsons MM Classification results obtained by Sky Research Production team

- 69 anomalies were requested for custom training, out of that 19 were TOI and 50 were scraps.

- All available CBE Parsons data were inverted and analyzed.

- No False Negatives: all TOI, total 170 = 137 (UXO) + 33 (Fuzes), were identified correctly.

- 253 Holes with clutter dug,

- 1047 Holes with clutter were not dug, i.e. ~81% of non-TOI left in the ground.
Targets that produced Unnecessary digs

Case-2601
- 5cm Fuze Case 482
- Anomaly # 2601

Case-2368
- 5cm Fuze Case 482
- Anomaly # 2368

Fuze -TOI

Fuze -not TOI

Targets that produced Unnecessary digs
Difficult cases: JD applied to CBE anomaly #2277

The curves of the MM MSR data matrix eigenvalues versus time do not show any evidence of the 37 mm target.

The ground truth revealed, in fact, that the 37 mm target was 90 cm away from the MM center.
Summary

- Advanced EMI models were applied to CBE Cued Data sets.
- Studies showed that the models are able to deal effectively with cluttered environment.
- Classifications were demonstrated for both R&D and production EMI sensors.
- No False Alarms.
- The models are easy to use for general users.
- The models were able to classify targets as small as 3 cm size fuzes.
Acknowledgments:

This work was supported by the ESTCP Project # MR-201101