Technical Report ARMET-TR-11031

M119 HOWTIZER SADDLE GUN FIRE FINITE ELEMENT ANALYSIS

R. Terhune
S. McDonald
M. Kotliar

December 2011

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
Munitions Engineering Technology Center
Picatinny Arsenal, New Jersey

Approved for public release; distribution is unlimited.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.
The M119 howitzer is the current fielded 105-mm artillery weapon. It is undergoing upgrades to the fire control system in which they will be adding new components and brackets to the existing system. Finite element analysis (FEA) was performed to determine the stress contours along the side of the saddle (a subsystem of the howitzer) in regions where holes will be added for fire control brackets. The FEA results were validated by strain gauge data from live fire test and provided the needed insight for verifying the hole locations.
<table>
<thead>
<tr>
<th>FIGURES (continued)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Strain gauge locations 1 to 4 used to compare to live-fire testing</td>
<td>7</td>
</tr>
<tr>
<td>13 Strain gauge 1 comparison</td>
<td>8</td>
</tr>
<tr>
<td>14 Strain gauge 2 comparison</td>
<td>9</td>
</tr>
<tr>
<td>15 Strain gauge 3 comparison</td>
<td>9</td>
</tr>
<tr>
<td>16 Strain gauge 4 comparison</td>
<td>10</td>
</tr>
<tr>
<td>17 Strain gauge locations 17 to 18 used to compare to live-fire testing</td>
<td>10</td>
</tr>
<tr>
<td>18 Strain gauge 17 comparison</td>
<td>11</td>
</tr>
<tr>
<td>19 Strain gauge 18 comparison</td>
<td>11</td>
</tr>
<tr>
<td>20 Strain gauge 19 comparison</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

The M119 howitzer is the U.S. Army's currently fielded 105-mm artillery weapon system. The M119A3, which is in production, will entail an upgrade to the fire control system. With this upgrade, new assemblies, components, brackets, and holes will be added to the existing M119 gun system in various locations. The scope of this analysis remains on the saddle subsystem of the howitzer. The saddle is the main structural support for the cannon, recoil system, and cradle and remains seated on top of the trail box. The goal of this modeling and simulation effort was to determine if the proposed addition of holes in the saddle should be in regions that see high stress. In addition, the finite element analysis (FEA) results will be compared with strain gauge data from testing for validation in the model.

METHOD

The stress contours and values in the M119 saddle were determined using modeling and simulation. The general purpose finite element program, ABAQUS Explicit 6.10.ef1 (ref. 1) was used. The models were non-linear and dynamic.

GEOMETRY

Figure 1 shows the saddle geometry.
FINITE ELEMENT MESH

The finite element (FE) mesh is displayed in figure 2. All the sheet metal parts were modeled with 8-node continuum shell elements with five integration points through thickness. There are 111,065 elements in total in the model consisting of 42,839 8-node hexahedral elements, 66,926 8-node continuum shell hexahedral elements, and 1,300 10-node tetrahedral elements.

![Figure 2: Saddle finite element mesh](image)

MATERIALS

The model used linear elastic material properties. The M119 uses a British stainless steel, but for the purpose of this analysis, a 17-4 stainless steel was used since its material properties match well.

<table>
<thead>
<tr>
<th>Part</th>
<th>Material</th>
<th>Modulus (psi)</th>
<th>Poisson Ratio</th>
<th>Density (lb*ft^2/in^4)</th>
<th>Yield (psi)</th>
<th>Ultimate True Plastic Strain</th>
<th>Ultimate True Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire Assembly</td>
<td>17-4 S.S.</td>
<td>2.85E+7</td>
<td>0.27</td>
<td>0.00732</td>
<td>125,000</td>
<td>0.11</td>
<td>163,850</td>
</tr>
</tbody>
</table>
APPLIED CONSTRAINTS

General frictionless contact is applied to the entire model at all contacting surfaces. Tie constraints were used to simulate all the welds that connect each part of the saddle (fig. 3). Given this may artificially strengthen the saddle, it's a close approximation, and since the regions of concern were away from the weld, the overall stress contours should not be affected (figs. 4 and 5).

![Diagram of saddle parts and their connections]

Figure 3
Tie constraints between various parts of the saddle
Carriage Simulant

Figure 4
Rigid body constraint on the trail box (carriage) stimulant

Coupling:
Reference Point – Trunion Supports

Connectors:
Trunnion “beam” connector

Ref. Point – Pintle
Ref. Point – Carriage

Figure 5
Coupling of reference points to geometry and connectors between reference points

APPLIED LOADS AND BOUNDARY CONDITIONS

The force and acceleration loads for this FEA model were provided by a rigid body kinematics model of the M119 weapon system at a quadrant elevation (QE) of 1244 mil. The force from the trunnions can be seen in figure 6 and is applied to the saddle as seen in figure 7. Figure 8 displays the acceleration boundary condition that is applied to the trail box stimulant as seen in figure 9. This will drive the trail box and saddle motion as it’s loaded with the trunnion force.
Figure 6
Trunnion force versus time plot

Figure 7
Force loading on the saddle
(Note: half the total load applied at each reference point and load applied with horizontal and vertical components)

Figure 8
Acceleration versus time plot of the trail box
RESULTS

The FE analysis converged to a solution and produced confident results. At the first peek in the force loading, the stress contour can be seen in figure 10. In figure 11, the stress contour of the saddle at the force maximum is seen. The regions of concern are circled in red. Overall, the regions where holes are being added see low stresses during gun fire.
The Von Mises stress values at specific locations on the saddle were recorded in the analysis so they could be compared to strain gauge derived stress values. Figures 12 and 17 show the locations and element numbers that were chosen. Stress comparisons for gauges 1 to 4 are displayed in figures 13 through 16 and for gauges 17 to 19 in figures 18 through 20.
Figure 12
(continued)

Von Mises - SG1 Saddle

Legend
• Strain Gauge data
• Strain Gauge average
• FEA average

Figure 13
Strain gauge 1 comparison
Figure 14
Strain gauge 2 comparison

Figure 15
Strain gauge 3 comparison
Figure 16
Strain gauge 4 comparison

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Part Instance</th>
<th>Element Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG17</td>
<td>I19200_12591867_PLATE</td>
<td>11700</td>
</tr>
<tr>
<td>SG18</td>
<td>I19200_12591867_PLATE</td>
<td>3151</td>
</tr>
<tr>
<td>SG19</td>
<td>I19200_12591860_PLATE_BOTTOM</td>
<td>2549</td>
</tr>
</tbody>
</table>

Figure 17
Strain gauge locations 17 to 18 used to compare to live fire testing
Figure 18
Strain gauge 17 comparison

Figure 19
Strain gauge 18 comparison
CONCLUSIONS

The model and simulation was able to capture the high rate gun fire event with confidence and proved to be an effective aid in the redesign to the weapon. Mesh refinement models were also run to verify that continuum shell elements produce accurate stress results as compared to typical three-dimensional hexahedral elements. Overall, the analysis results provided accurate stress contours over the saddle in the regions of concern. Validation and correlation was achieved as the finite element analysis stress values matched up well with live fire test strain gauge data at multiple locations on the saddle. With confidence in the model results, decisions can be made with regards to what locations would be appropriate for adding holes in the saddle for new components.
REFERENCES

DISTRIBUTION LIST

U.S. Army ARDEC
ATTN: RDAR-EIK
 RDAR-GC
 RDAR-ME, J. Hedderich
 RDAR-MEF, W. Smith
 RDAR-MEF-E, R. Terhune (2)
 RDAR-MEF-E, D. Troast
 A. Totten
 RDAR-WSW-I, M. Kotliar
 S. McDonald
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

Commander
Soldier and Biological/Chemical Command
ATTN: AMSSB-CII, Library
Aberdeen Proving Ground, MD 21010-5423

Director
U.S. Army Research Laboratory
ATTN: AMSRL-CI-LP, Technical Library
Bldg. 4600
Aberdeen Proving Ground, MD 21005-5066

Chief
Benet Weapons Laboratory, WSEC
U.S. Army Research, Development and Engineering Command
Armament Research, Development and Engineering Center
ATTN: RDAR-WSB
Watervliet, NY 12189-5000

Director
U.S. Army TRADOC Analysis Center-WSMR
ATTN: ATRC-WSS-R
White Sands Missile Range, NM 88002

Chemical Propulsion Information Agency
ATTN: Accessions
10630 Little Patuxent Parkway, Suite 202
Columbia, MD 21044-3204

GIDEP Operations Center
P.O. Box 8000
Corona, CA 91718-8000