TACOM LCMC IB and DMSMS Mitigation

Source: RANDAL GAEREMINCK, ASSOCIATE DIRECTOR

As of: 260800SEP11

UNCLASSIFIED: Distribution Statement A. Approved for public release.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 OCT 2011</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACOM LCMC IB and DMSMS Mitigation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randal Gaereminck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>22340</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACOM/TARDEC/RDECOM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22340</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SECURITY CLASSIFICATION OF:</th>
<th>16. LIMITATION OF ABSTRACT</th>
<th>17. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>SAR unclassified</td>
<td>25</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Agenda

• Introductions
• Purpose
• IBIT/ IBET Mission
• Automation Alley Contract
• TACOM Industrial Base Visibility and Communication Tool description and demonstration
• TACOM Industrial Base Trend / Risk Analysis
• Sustainment Engineering Risk Assessment (SERA)
• Summary/Questions
Purpose

• Provide an overview of the new Industrial Base and DMSMS mitigation tools and capability
• Demonstrate the TACOM Industrial Base Visibility and Communication Tool
• Review the TACOM Industrial Base Trend / Risk Analysis
• Provide an overview of the Sustainment Engineering Risk Assessment (SERA) objective, process, and benefits
TACOM LCMC Industrial Base Integration Team (IBIT)

Testing, Verification and Validation
 Operational Impact Analyses
 Reverse Engineering
 Strategic Materials

DMSMS Management & Operation
 Tracking of Bills of Material and Technical Data Packages

Industrial Base Engineering Team IBET

Industrial Capability Assessments
 Defense Priorities Allocation System
 Industrial Labor Relations
 Production Readiness Review
 Surge and Contingency Operations
 Committee on Foreign Investment in the United States (CFIUS)

IB Issues PEOs, ILSC, Depots, OEMs, Etc.

One Team One Vision

Industrial Base Management Group IBMG
Automation Alley Contract

- Automation Alley, Michigan’s largest technology business association, is currently on contract with TARDEC to provide industrial base support for the TACOM LCMC Diminishing Manufacturing Sources and Material Shortages (DMSMS) program.

- The contract with Automation Alley has created a capability to establish commercial industrial base visibility and communicate TACOM LCMC requirements with companies across the United States.

- Similar to STS work directive-based contract.
Automation Alley Capabilities

• Repair part analysis and data mining capability for families of vehicles.
• Manufacturing/Industrial base capability, trend, and risk knowledge
• Reverse engineering and administration to provide replacement parts and Technical Data Packages (TDPs)
• Locating and vetting suppliers for specific components or manufacturing technology
• Industrial Base Visibility and Communication tool – manufacturer’s contact information and integrated email communication capability
• Prototype demonstration and test planning and support
• Technical competencies in many mechanical/electrical areas
Contract Work Directives

- WD001 – Program Management
- WD002 – Industrial Base Visibility and Communication Tool
- WD003 – High Purity Aluminum Electroplating Sources
- WD004 – Industrial Base Office Sector Study
- WD005 – Transducer Sources
- WD006 – Valve Sources
- WD007 – DMSMS Case Analyses
- WD008 – TACOM Bi-Annual Industrial Base Trend/Risk Analysis
- WD009 – TACOM LCMC Legacy Vehicle Sustainment Studies
- WD010 – Replacement of Cadmium Hex-Chrome plated material on TACOM LCMC equipment
Industrial Base Visibility and Communication Tool

Objective:

• Create, update, and maintain Industrial Source access to support the Diminishing Manufacturing Sources and Material Shortages (DMSMS) effort.

• Identify current TACOM sources and potential industrial supply base sources to provide a maximum number of available options to resolve DMSMS issues.

• Analyze trends and risks associated with the U.S. commercial industrial base.

Linking TACOM LCMC requirements to Industrial Base Capabilities
Industrial Base Visibility and Communication Tool

>20,000 companies

~1,700 automotive companies

‘cloud’ storage
Geographical View of Suppliers

LunaTech Designs Google Earth plug-in
Industrial Base Trend/Risk Analysis

• Health and Risk Analysis of TACOM Industrial Base sorted by the 489 Federal Supply Classes.

• Evaluation Criteria used
 – Number of companies per FSC
 – Financial Health
 – Trends

• Bi-Annual Assessments
Industrial Base Trend/Risk Analysis

- Cage FSC Data
- Database Query Analysis

FSC: 5341
Select an FSC: 5341

Description: Brackets

Total # of CAGE Codes:
- High_Risk: 1
- Medium_Risk: 0
- Low_Risk: 0
- Not_Available: 0

Total # of Small_Business: 0

ICP_Code: Not Available
Cty: Not Available

CAGE Code Breakdown:

- FSC: 5341
- Small_Business: Not_Available

Small Business Classifications:

- Company Name: LABARGE PRODUCTS INC.
- Prescreen Score: High Risk

TACOM Databases:

- Not Available

DLA Databases:

- Not Available
Industrial Base Trend/Risk Analysis

![Database Query Interface](image)

FSC: 1915

Description: Cargo and Tanker Vessels

<table>
<thead>
<tr>
<th>Count of Financial Risk Scores</th>
<th>FSC Prescreen Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Risk</td>
<td>Medium Risk</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CAGE Code Breakdown:

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Prescreen Score</th>
<th>MG Zone Xx</th>
<th>SOY OF</th>
<th>Sea_Cert_SDB</th>
<th>SDA_Cert_SDB</th>
<th>Rel_A6</th>
<th>VGB</th>
<th>MG A2</th>
<th>Ablet_June A7</th>
<th>Naick</th>
<th>Rock Island</th>
<th>Warren</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINCOLN ELECTRIC HOLDINGS INC.</td>
<td>Low Risk</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>HALTER MARINE INC.</td>
<td>Not Available</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>MILITARY SPECIFICATIONS</td>
<td>Not Available</td>
<td>✗</td>
</tr>
<tr>
<td>U.S. ARMY AVIATION AND MISSILE</td>
<td>Not Available</td>
<td>✗</td>
</tr>
</tbody>
</table>

Total # of CAGE Codes: 4
Total # of Small Business: 0
ICP Code: Not Available
City: Not Available

FSC Code 1915 Selected:

Navigation Pane:
- Home Create External Data Database Tools Add-Ins
- Final Query Cage_SM_Business SPRM_PSC_Cage_FRisk_Snib_Src
- FSC: 1915
- Select an FSC: 1915
- Description: Cargo and Tanker Vessels
- Total # of CAGE Codes: 4
- Total # of Small Business: 0
- ICP Code: Not Available
- City: Not Available

FSC Code 1915 Breakdown:

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Prescreen Score</th>
<th>MG Zone Xx</th>
<th>SOY OF</th>
<th>Sea_Cert_SDB</th>
<th>SDA_Cert_SDB</th>
<th>Rel_A6</th>
<th>VGB</th>
<th>MG A2</th>
<th>Ablet_June A7</th>
<th>Naick</th>
<th>Rock Island</th>
<th>Warren</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINCOLN ELECTRIC HOLDINGS INC.</td>
<td>Low Risk</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>HALTER MARINE INC.</td>
<td>Not Available</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>MILITARY SPECIFICATIONS</td>
<td>Not Available</td>
<td>✗</td>
</tr>
<tr>
<td>U.S. ARMY AVIATION AND MISSILE</td>
<td>Not Available</td>
<td>✗</td>
</tr>
</tbody>
</table>

Record: 1 of 4

26SEP11 UNCLASSIFIED
Escalating Support Challenges

- Increasing O&S requirements (65-80% of Life Cycle Cost)
- Equipment condition due to deployments (Degradation)
- Obsolescence of Army systems due to age (25-40 yrs)
- Loss/change of manufacturing sector for COTS (Support Strategy Risk)
- Inconsistent lifecycle sustainment policy & planning (Organic vs. CLS vs. TDPs?)
- Inconsistent engineering/design influence for sustainment (Poor Lifecycle Planning)
- Stove-piped industrial base issue investigation & resolution (ILSC & PM vs. LCMC)
- Negative economic trends impacting commercial industrial base (Industrial Base Risk)
- Environmental and safety impacts (e.g., cadmium, asbestos, Pb-free electronics)

Result = Increase in Reactive Support Issues
Solution = Proactive Logistics Engineering Support
Reactive vs. Proactive

- Backorders
- DLA 339s
- Shortages
- Obsolescence
- Etc.

Utilize methods (SERAs) to identify and prevent reactionary measures.
Sustainment Engineering Risk Assessment (SERA) Objective

• Proactively evaluate equipment data and identify industrial base related obsolescence and sustainment risk.
 • Leverage all existing available data (support strategy, usage, organic, and commercial).
 • Identify and document evidence of system, platform, or vehicle level obsolescence.
 • Provide platform or equipment managers factual documentation necessary to forecast resources via Army Working Capital Fund (AWCF), Sustainment System Technical Support (SSTS), and plan corrective actions and material change efforts.
• Support AR 700-127 (Post Fielding Sustainment Readiness Reviews (SRR)).
Define Target System for Evaluation

Clean NSN List

Extract Functional NSN Data (ILAP, OSMIS, FEDLOG, LIW)

Populate SERA Data Fields; Organize and Parse Data

Develop Algorithms, Flags, and other Gauges to Highlight Risk

Compute SERA Master Risk Priority Indicator (RPI)

Sort NSNs into Segments and Evaluate

Top 25 RPI

Top 100 RPI

Evaluate all NSNs based on various Risk Decision Rules

Report Results targeting Financial, Part Delivery, Industrial Base, or Material Risk Areas
Sustainment Data Elements

<table>
<thead>
<tr>
<th>Weight Factor</th>
<th>Indicator Description</th>
<th>Risk Condition (Indicator =1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>Single or no CAGE Code</td>
<td>1: <=1 CAGE Code</td>
</tr>
<tr>
<td>5.0</td>
<td>PBO 6-Month</td>
<td>1: Y</td>
</tr>
<tr>
<td>4.0</td>
<td>Zero Immediate OH Stock with Due Out</td>
<td>1: ZBAL="Y" and OH<0.5*RO</td>
</tr>
<tr>
<td>3.5</td>
<td>Acquisition Advice Code</td>
<td>1: AAC= Y,V,N,X,T, Inactive or Nomenclature = Inactive</td>
</tr>
<tr>
<td>3.5</td>
<td>Top 15% CWT</td>
<td>1: >= top 15% in latest year</td>
</tr>
<tr>
<td>3.5</td>
<td>Warehouse OH Stock < RO</td>
<td>1: OH<RO</td>
</tr>
<tr>
<td>3.0</td>
<td>Zero Stock with Recent Demand</td>
<td>1: OH=0 with Dmd in last 2 yrs</td>
</tr>
<tr>
<td>3.0</td>
<td>No Recent Demand</td>
<td>1: OSMIS & ILAP=0 in last 2 yrs</td>
</tr>
<tr>
<td>3.0</td>
<td>D&B High Risk Indicator</td>
<td>1: Y</td>
</tr>
<tr>
<td>2.5</td>
<td>OCONUS Only CAGE Code</td>
<td>1: All CAGE Codes(>0) = OCONUS</td>
</tr>
<tr>
<td>2.5</td>
<td>Top 15% Closed Maintenance Work Order</td>
<td>1: >= top 15%</td>
</tr>
<tr>
<td>2.5</td>
<td>Top 15% Open Maintenance Work Order in past 12M</td>
<td>1: >top 15%</td>
</tr>
<tr>
<td>2.5</td>
<td>Readiness Driver</td>
<td>1: Y</td>
</tr>
<tr>
<td>2.5</td>
<td>Technical Data Unavailable</td>
<td>AMC/AMSC & DAC</td>
</tr>
<tr>
<td>2.0</td>
<td>Closed Maintenance Work Order</td>
<td>1:>0</td>
</tr>
<tr>
<td>2.0</td>
<td>Open Maintenance Work Order in past 12M</td>
<td>1:>0</td>
</tr>
<tr>
<td>2.0</td>
<td>CWT Increasing</td>
<td>1: Latest FY >1.1*Prev FY AND Latest FY > Median</td>
</tr>
<tr>
<td>2.0</td>
<td>Recent Back Order (60 day)</td>
<td>1: Y</td>
</tr>
<tr>
<td>2.0</td>
<td>Hazardous Materials</td>
<td>HMIC, HCC, & characteristic</td>
</tr>
<tr>
<td>1.5</td>
<td>Shelf Life Exceeded</td>
<td>1: Y</td>
</tr>
</tbody>
</table>
MS Access Views and Reports
Additional NIIN Data
Additional NIIN Data
Sustainment Engineering Risk Assessment (SERA) Benefit

- Proactively evaluate equipment data and identify industrial base related obsolescence and sustainment risk.
- Leverage all existing available data (support strategy, usage, organic, and commercial).
- Identify and document evidence of system, platform, or vehicle level obsolescence.
- Provide platform or equipment managers factual documentation necessary to forecast resources via Army Working Capital Fund (AWCF), Sustainment System Technical Support (SSTS), and plan corrective actions and material change efforts.
- Support AR 700-127 (Post Fielding Sustainment Readiness Reviews (SRR)).
Available SERA Capability

- Application:
 - Component
 - Vehicle
 - Family of Vehicles
 - PM/PEO Portfolio
 - LCMC/Command

- Data refresh:
 - One-time study (M915)
 - Quarterly, semiannual, annually (Abrams)

- Potential for other sustainment opportunities – cost and sector studies, VE, commonality assessments
Summary

• Provided an overview of the new Industrial Base and DMSMS mitigation tools and capability
 • Demonstrated the TACOM Industrial Base Visibility and Communication Tool
 • Reviewed the TACOM Industrial Base Trend / Risk Analysis
 • Provided an overview of the Sustainment Engineering Risk Assessment (SERA) objective, process, and benefits

• Discussion and questions.