Combining High Dynamic Range Photography and High Range Resolution RADAR for Pre-discharge Threat Cues

Nikola Subotic
Nikola.Subotic@mtu.edu
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>16 AUG 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td></td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>COMBINING HIGH DYNAMIC RANGE PHOTOGRAPHY AND HIGH RANGE RESOLUTION RADAR FOR PRE-DISCHARGE THREAT CUES</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td>Nikola Subotic</td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>U.S. Army TARDEC, 6501 E. 11 Mile Rd, Warren, MI, 48397-5000</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td>#22074</td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td>N/A</td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>24</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>
The objective of this project is to develop a joint high dynamic range photography and high range resolution RADAR system on mobile platforms to provide pre-discharge threat warning in urban and mountain environments.
Approach:

- Expand upon the sensor and processing concepts of MTRI Counter RPG and Counter Sniper programs.
 - The expansion of the system will be in the areas of
 - rural, mountainous terrain and threats
 - incorporating cued high dynamic range imagery to the warfighter.
 - Clutter rejection and target detection algorithm variants will be developed
 - develop a parallel aperture high dynamic range optical system along with its attendant signal processing
 - provide confirmatory images of the threat as cued by the RADAR.
 - high dynamic range optical system will be cued by the RADAR in operation
 - Deploy our instrumentation RADAR and optical system at mountainous sites for empirical collections to verify performance
 - Provide a near real-time demonstration of the system.
Optical Difficulty: Find the Shooter
Radar Locates Potential Threat

* Chart is Animated in Slide Show Mode
Shooter is Located
Impacts of Mountain/Rural Clutter

- Moving from “Sniper in Building” to “Sniper in Mountainous Terrain” – significant differences

<table>
<thead>
<tr>
<th>Urban</th>
<th>Mountainous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright and more localized discretes</td>
<td>Diffuse and distributed scatters</td>
</tr>
<tr>
<td>Fast changes in spatial clutter</td>
<td>Slow to moderate changes in spatial clutter</td>
</tr>
<tr>
<td>Predominance of flat surfaces (walls/furniture)</td>
<td>Distribution of rocks and vegetation</td>
</tr>
<tr>
<td>More control of incident angles</td>
<td>Wide variety of incident angles</td>
</tr>
<tr>
<td>Clutter = combination of several discretes</td>
<td>Clutter = variety of distribution of scatterers (moderate to heavy-tailed)</td>
</tr>
<tr>
<td>Polarimetric – known distinct differences between targets/clutter</td>
<td>Polarimetric – expect differences but less distinct between targets/clutter</td>
</tr>
<tr>
<td>Weapon variety – mod variability</td>
<td>Weapon variety – more variable</td>
</tr>
<tr>
<td>Focused Scan Area (windows, roofs, edges of buildings)</td>
<td>Larger Scan Area (more possible locations)</td>
</tr>
</tbody>
</table>
Ft. Pickett Collection Campaign

March, April 2008
W and Ka bands collected
Ave Pd=.95 at Pfa=.05
Blind Test Results Show Detectable Signatures in Clutter

- Radar scanned across building with blind target deployment
 - Complex clutter in room including holes in walls, steel furniture and large wooden ladder
 - Deployed behind fully open, half open windows and “kill hole”
- System correctly identified all threats without false alarms

Null-to-Null Beam Locations During Sweep of Building: W-Band

Real Threats:
- AK-47
- Dragonov
- Sniper Rifle
- RPG-7

False Threats:
- Broom
- Shovel
- Ladder

Animated GIF plays in “SlideShow” mode
Scan set #1
 - False alarm testing
 • Scan #1: building with confuser targets
 - Empty rooms, people, people with implements
 » Positioning of people determined on site with government
 • Scan #2: completely empty building, shutters open
 • Scan #3: empty building with shutters closed

Inspection of processing results

Scan set #2
 - Detection testing
 • 3 Scans
 • 4 Weapons
 - RPG-7, Dragunov, AK-47, AR-10
 • Positioning of target determined on site with government
 • Confusers added as resources permit
Scenario

Munitions
• Dragunov
• AK47
• RPG
• AR10

Confusers
• Person with Tripod
• Person with Broom

Results
• Dragunov, AK47, RPG, and AR10 detected as weapons
• Person+Tripod declared as clutter
• Person+Broom declared as clutter

Notes
• AK47 and Dragunov in same room
Summary: Algorithm Declarations

- All weapons within search range of system were detected
- No false alarms
- Automated algorithm used 4 minutes for declarations (non-real time code)

<table>
<thead>
<tr>
<th></th>
<th>Window 1</th>
<th>Window 2</th>
<th>Window 3</th>
<th>Window 4</th>
<th>Window 5</th>
<th>Window 6</th>
<th>Window 7</th>
<th>Window 8</th>
<th>Window 9</th>
<th>Window 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutter Test, Windows Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Person</td>
</tr>
<tr>
<td>Clutter Test, Windows Open</td>
<td></td>
<td>Person</td>
<td>Person</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Person</td>
</tr>
<tr>
<td>Clutter Test, Windows Closed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Person</td>
</tr>
<tr>
<td>Detect Test 1</td>
<td>Dragunov</td>
<td>RPG</td>
<td>Person + Tripod</td>
<td>AK47</td>
<td>AR10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect Test 2</td>
<td>RPG</td>
<td>Person + Tripod</td>
<td>AK47</td>
<td>AR10</td>
<td>Dragunov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect Test 3</td>
<td>AK47 + Dragunov</td>
<td>RPG</td>
<td>Person + Tripod</td>
<td>Person + Broom</td>
<td>AR10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detection | Missed Detection/Outside Search Area | False Alarm | Confuser | Correct Declaration | Incorrect Declaration

- Confuser
- Correct Declaration
- Incorrect Declaration
Nonparametric Boosting Classification: Discrimination of Output Cues

- Nonparametric boosting-based rule ensembles
 - Flexible to new operating conditions
 - Doesn’t assume Gaussianity
 - Needs relatively moderate amounts training data
 - Robust to over fitting
 - Computationally efficient
 - Approximately optimal (Bayesian Neyman-Pearson Detector)
Mountainous Surrogate: Quarry at Ft. Pickett, VA
Mountainous Surrogate: Ft. Pickett, VA
Algorithm Declaration After SAR Processing

- Algorithm searched for target over all ranges
- Azimuth compression eliminates false alarm (clutter is localized in azimuth)
Quarry Clutter Scans Processed Using Training Sets

- Training sets created from urban target and quarry clutter
 - Training sets are HV, so testing sets are also HV
- Test data was quarry clutter scans
- Expectation that false alarms would decrease with better clutter match was verified
High Dynamic Range Photography

Combination of 4 moderately exposed images

Camera metered as ‘normal’ exposure

Vs.

Significantly overexposed image (no context)

+2 stops

+1 stop

-1 stop
High Dynamic Range Photography

- Linear Combination of over/under exposed images to increase dynamic range
 - Maximum likelihood
- Tone mapping optimally maps high dynamic range data onto display
 - Local operator using the zone method (local dodging and burning)

\[L_d(x, y) = \frac{L(x, y)}{1 + V(x, y; s)} \]

\[V(x, y, s) \] - local average over scale s
Fattal (2002) – Localized gradient based method
[1 alpha, .8 beta, 1 saturation, no noise reduction]
Mountainous Site: Ft. Carson, CO
Ft. Carson Site 1

Site 1: Broadside
300m view

Site 2: Off Center
500m view
Summary

- Initial results from Ft. Pickett are very promising
 - With minimal training on new data, detection/FA results are quite good
 - $P_d=1, P_{fa}<5\%$

- Including EO imagery provides actionable imagery to commander
 - RF provides cues
 - HDR alleviates shadowing while maintaining context

- Ft. Carson campaign to commence in early August
 - Much larger data set
 - True mountainous terrain
 - Using both EO and Radar in the collection

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.