Development of an Unified Atmospheric Model (NUMA)

Frank Giraldo
Department of Applied Mathematics
Naval Postgraduate School, Monterey CA USA
http://faculty.nps.edu/fxgirald

Collaborators: Jim Kelly (NPS) and Emil Constantinescu (ANL)

Oberwolfach August 12, 2010

*Funded by ONR and AFOSR (Computational Mathematics)
Development of an Unified Atmospheric Model (NUMA)

Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA, 93943

Oberwolfach Talk, August 12, 2010

1. REPORT DATE
12 AUG 2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Development of an Unified Atmospheric Model (NUMA)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA, 93943

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
Motivation for this Work

We are interested in constructing numerical methods for constructing non-hydrostatic mesoscale and global atmospheric models (for NWP applications); this is a unified model. The reason for this is economics - one (production) model is cheaper to support.

Currently, in the U.S. there is a movement to construct one NWP model (NWS, Navy, and Air Force). This National Board (NUOPC=National Unified Operational Prediction Capability) aims to develop a new model that is:

1. Highly scalable on current and future computer architectures
2. Global model that is valid at the meso-scale (i.e., non-hydrostatic)
3. Applicable to medium-range NWP
4. Applicable to decadal time-scales

The following talk outlines a model development effort to meet these needs…
Talk Summary

• Governing Equations
• Spatial Discretization
• Preliminary (Validation) Results
• Parallel Implementation
• Closing Remarks
Governing Equations
(compressible Euler equations)

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \]
(Mass)

\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{1}{\rho} \nabla P = -2 \mathbf{\Omega} \times \mathbf{u} - \nabla \phi_A \]
(Momentum)

\[\frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta = 0 \]
(Energy)

\[\mathbf{u} = (u,v,w)^T, \quad \mathbf{x} = (x,y,z)^T, \quad \nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)^T \]

\[P = P_A \left(\frac{\rho R \theta}{P_A} \right)^\gamma \]
(Equation of State)

\[\theta = \frac{T}{\pi} \quad \text{and} \quad \pi = \left(\frac{P}{P_A} \right)^{R/c_p} \]
Spatial Discretization

- **Primitive Equations:**
 \[\frac{\partial q}{\partial t} + \nabla \cdot \mathbf{F} = S(q) \]

- **Approximate the solution as:**
 \[q_N = \sum_{i=1}^{M_N} \psi_i q_i \quad \mathbf{F}_N = \mathbf{F}(q_N) \quad S_N = S(q_N) \]
 - **Interpolation O(N)**

- **Write Primitive Equations as:**
 \[R(q_N) \equiv \frac{\partial q_N}{\partial t} + \nabla \cdot \mathbf{F}_N - S_N = \varepsilon \]

- **Weak Problem Statement: Find**
 \[q_N \in \Sigma(\Omega) \forall \psi \in \Sigma \]
 \[\Sigma = \left\{ \psi \in H^1(\Omega) : \psi \in P_N(\Omega_e) \forall \Omega_e \right\} \quad \text{(CG)} \]
 \[\Sigma = \left\{ \psi \in L^2(\Omega) : \psi \in P_N(\Omega_e) \forall \Omega_e \right\} \quad \text{(DG)} \]
 - such that
 - **Integration O(2N)**
 \[\int_{\Omega/\Omega_e} \psi R(q_N) d\Omega = 0 \]
Spatial Discretization
(Comparison of CG/DG Methods)

Continuous Galerkin Methods

- High order accurate yet local construction (via DSS)
- Simple to construct efficient semi-implicit time-integrators
- In high-order mode, primarily used with quads and inexact integration (e.g., using Lobatto points avoids non-diagonal mass matrix with slight error since integration is $O(2N-1)$)
- No analog of Lobatto points exist on the triangle so costly to use
- Excellent scalability on MPP

Discontinuous Galerkin Methods

- High order accurate and completely local in nature (no DSS required as in CG)
- High order generalization of the FV (but with compact support)
- Upwinding and BCs implemented naturally (via Riemann solvers)
- Not so easy to construct efficient semi-implicit time-integrators, due to the difficulty in extracting the Schur complement
- Since matrices are all local, using quads or triangles is straightforward and one need not worry as much about exact vs. inexact integration
- Excellent scalability on MPP
Preliminary Results
(Model Description)

- Basis functions: 3D tensor products of Lobatto-Gauss-Legendre (LGL) points. Elements are hexahedra (Triangular prisms coming soon).
- Time-Integrators are: explicit SSP-RK, IMEX-BDF2 (Schur and No Schur), Fully-Implicit BDF2 (JFNK), IMEX-RK (currently, No Schur only)
- Mesoscale (limited area) and Global (spherical domain) options
Preliminary Results
(Linear Hydrostatic Ridge and Mountain)

- Flow of $U=20$ m/s in an isothermal atmosphere.
- LH Ridge: Witch of Agnesi ridge: Mountain height = 1 m with radius 10 km.
- LH Mountain: Solid of revolution of Witch of Agnesi: Mountain height = 1 m with radius 10 km.
- Absorbing (sponge) boundary condition implemented on lateral and top boundaries.
Linear Hydrostatic Ridge

![Graphs showing fluid dynamics over time and depth.](image)
Linear Hydrostatic Isolated Mountain
(Grid Resolution: 2400 x 480 meters)
Preliminary Scaling Experiments
(Performed on Ranger TACC)

32x32x32 elements with 4th Order Polynomials
(2 Million Grid Points)

48x48x48 elements with 4th Order Polynomials
(7 Million Grid Points)
A Multitude of Challenges Remain

- Further dry physics validation is necessary (e.g., Baroclinic Instability problems).
- Simple moisture has been tested in 2D (manuscript almost finished) and now implementing it in 3D.
- Full sub-grid scale parameterization needs to be included (can compare against older hydrostatic version called NSEAM).
- Interesting question is: how will the NH and H models compare in terms of both solution quality and cost?
- Adaptivity will, eventually, be included (as in A. Müller) but I envision only using triangular prisms.
- Explicit scalability is great but must improve on Semi-Implicit performance (different time-integrators and new approaches for DG such as in M. Restelli’s talk on hybridized DG).