RISK-BASED COMPUTATIONAL PROTOTYPING
(BRIEFING CHARTS)
Philip Beran, José Camberos, Ned Lindsley, and Bret Stanford
Multi-Disciplinary Technologies Branch
Structures Division

OCTOBER 2010
Interim Report

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages
Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RB-WP-TM-2011-3043 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH THE ASSIGNED DISTRIBUTION STATEMENT.

*//Signature//
PHILIP S. BERAN
Principle Research Aerospace Engineer
Multi-Disciplinary Technologies Branch
Structures Division

//Signature//
DENIS P. MROZINSKI, Chief
Multi-Disciplinary Technologies Branch
Structures Division

//Signature//
DAVID M. PRATT
Technical Advisor
Structures Division
Air Vehicles Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.
We are developing computational methods that will enable the computational design of air vehicles accounting for inherently nonlinear dynamic behaviors. These behaviors fall into two categories: behaviors that are beneficial for vehicle operation, such as could be observed for micro air vehicles propelled by wing flapping (e.g., a productive energy transfer between the unsteady vortical flow produced by a flapping wing and the associated nonlinear deformation of the wing), and behaviors that constrain vehicle operation, such as in the dangerous limit-cycle oscillation of large aircraft. In either case, the design space is large and the analysis multi-disciplinary. We have investigated different ways of computing sensitivities of vehicle dynamics to a large number of design variables, compressing the computation using model reduction, and assessing the impact of variability on the reliability of the system.
Risk-Based Computational Prototyping

Dr. Philip Beran, Principal Research Aerospace Engineer, PI
Dr. José Camberos, Aerospace Engineer, Co-PI
Dr. Ned Lindsley, Aerospace Engineer, Co-PI
Dr. Bret Stanford, Post-Doctoral Research Associate

Multidisciplinary Science & Technology Center (MSTC)
Air Vehicles Directorate

September, 2010

Approved for public release.
MSTC Organization & Activity

Mission: *Integrate multiple disciplines to discover and exploit new phenomena for system optimization and assessment of revolutionary aerospace vehicles*

Prototype Representation & Design Exploration Methods
- Parametric Geometry & Mesh
- Subsystem Representation
- Design Space Exploration & Optimization
- Risk-based Design

Analysis Methods for Prototypes
- Multidisciplinary Analysis
- Appropriate-fidelity Solutions and Sensitivities
- Nondeterministic Models

Prototype Validation & Assessment
- HiFi QTA
- Prototype Experimental Validation
- TRL Assessment

Shared Activity - Utilize a Unified Framework (SORCER, MODEL Center)

Approved for public release.
Some Significant Collaborations

MSTC Collaborative Center with VPI & SU, WSU, and University of Maryland (Formed March 2009)

Prof Kapania, Director
Dr. Kolonay, PM

AFRL/RB and WSU Center for Micro Air Vehicle Studies (Formed June 2010)

Prof Huang, Director
Dr. Beran, PM

• Prof Missoum, Mr. Basudhar (UA, Tucson) and Dr. Lambe (MSSRC) – RBDO with LCO
• Prof Dong and Mr. Gaston (WSU) – ROM and Simulation of falling bodies
• Prof McFarland and Mr. Hubbard (UIUC) – Transmission design with nonlinearity

Approved for public release.
Internal Collaborations in MAVs

Math (6.1)
- Risk-Based Computational Prototyping
 - Beran (PI), Camberos, Lindsley

Physics (6.1)
- Physics-Based Design Analysis of MAVs
 - Snyder (PI), Beran, Kolonay

Basic Research in Computational Design (2009-2011)

- NRC: Chabalko, Kurdi, McClung, Stanford

Basic and Applied Research in MAVs
- *Structural and Flight Testing* (Parker) – validation of structural and system models
- *CFD* (Visbal) – verification of aero models
- *Controls Science* (Doman) – integration of controls models
- *Unsteady Aerodynamics* (OL) – validation of aero models
- *Perching Technologies* (Reich) – application of aero models

Flapping Sciences Integration (2009-2011): 6.2
- Service-oriented framework
- In-house computer scientists
- Design tools (*Transition*)
- Funded follow-on design program (MPP, FY12+)

Approved for public release.
Role of Computational Mathematics

PDF

Distribution of critical speeds arises via variability in air vehicle or environment

Speed at which LCO achieves maximum value

Target Flight Speed

U_∞

$PF = \text{Probability of Failure (large LCO)}$

Must be sufficiently small

$P_F = \text{Probability of Failure (large LCO)}$

Must be sufficiently small

Computational mathematics needed for physics-based design of reliable vehicles

Approved for public release.
Role of Computational Mathematics (cont.)

• Exploit nonlinear aeroelastic interactions for small aircraft

Unsteady Deformations

• Numerous challenges for design of Micro air vehicles (MAVs)
 – Physics Rich (must be a physics-based approach)
 – Complex and time-dependent actuations (unsteady)
 – Non-conventional geometries and structural topologies
 – Power-based integration of propulsion, structure, control components

Computational mathematics needed for physics-based design of MAVs

Approved for public release.
Monolithic-time collocation

Requires increased resolution

• Uses a local basis instead of global basis

\[X_e(\zeta) = \sum_{q=0}^{m} X_e(\zeta_q)\Psi_q(\zeta) \]

- Order of the spectral element
- Zeroes of the Lobatto-Legendre polynomials
- Lagrange polynomial of order \(m \)

Approved for public release.
Monolithic-Time Collocation

Arrays corresponding to a discrete 2D field variable

\[
X_{\text{mon}} = [X^0, X^1, X^2, X^3, \ldots]
\]

Context for time-periodic and transient solutions
Adjoint-Variable Approach

1. Solve $F_{mon}(X_{mon}, \lambda) = 0$

 $H(X_{mon}) = \text{objective}$
 $F_{mon} = \text{equation residual}$

2. $\begin{bmatrix} \frac{\partial F_{mon}}{\partial X_{mon}} \end{bmatrix}^T C_{mon} = \begin{bmatrix} \frac{\partial H}{\partial X_{mon}} \end{bmatrix}^T$

3. \[\frac{dH}{d\lambda} = - C_{mon}^T \frac{\partial F_{mon}}{\partial \lambda} \]

Sensitivity:
\[\frac{dH}{d\lambda} = - \frac{\partial H}{\partial X_{mon}} \left(\frac{\partial F_{mon}}{\partial X_{mon}} \right)^{-1} \frac{\partial F_{mon}}{\partial \lambda} \]

High cost: computed once

Inexpensive:
analytic or finite-difference (repeat for each variable) about monolithic solution

Goal: Examine challenge of storing X_{mon} between step 1 and 2
Adjoint Computation for Transient Sensitivity Analysis

Goal: Develop a sensitivity analysis process that scales well with total # DOFs

- Interested in the adjoint-variable approach in anticipation of:
 - many design variables (not true of direct and sampling based approaches)
 - use of gradient-based optimization (trade global effectiveness for efficiency)

- Some relevant literature

- Create a sample problem to explore a POD-based approach to eliminate challenge of storing the forward solution
Problem Description

 transient analysis of incompressible flow in a square cavity with unsteady lid

Flow at rest initially

\begin{align*}
\frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} &= \frac{1}{Re} \nabla^2 \omega \\
\nabla^2 \Psi &= -\omega \\
u &= \frac{\partial \Psi}{\partial y}, \quad v = -\frac{\partial \Psi}{\partial x}
\end{align*}

• Steady: \(U = 1 \) (impulsive)
 – verify; assess accuracy

• Transient: \(U = \frac{1}{2}(1-\cos(f t)) \)
 – define \(H \), a function of the transient solution
 – compute sensitivity of \(H \) to frequency, \(f \)

• Streamfunction-vorticity form

Approved for public release.
Discretization and Time Integration

1. \[
\frac{\omega^{n+1} - \omega^n}{dt} + \left(u \delta_x \omega + v \delta_y \omega \right)^n = \frac{1}{\text{Re}} \left(\delta_{xx} + \delta_{yy} \right) \omega^{n+1}
\]

2nd-order-accurate, central-difference operators

2. \[
\left(\delta_{xx} + \delta_{yy} \right) \Psi^{n+1} = -\omega^{n+1}
\]

Explicit/implicit formulation

3. Repeat for next time step

\[
\omega(x,1) = -\frac{2}{\Lambda_y^2} \left(\Psi(x,1 - \Delta_y) + U(t)\Delta_y \right) + O(\Delta_y)
\]

Approved for public release.
Adjoint-Variable Approach

\[\Delta X_{\text{mon}} = -F_{\text{mon}} \]

\[C_{\text{mon}} = \left(\frac{\partial H}{\partial X_{\text{mon}}} \right)^T \]

Reverse-time

Linear, time invariant

Vorticity BC coupling terms

Jacobians arising from convective terms [apply data compression]
Verification (Steady State)

\[\Psi_{\text{min}} \in [-0.1026, -0.1035] \text{ Collected*} \]

\[-0.1035 \text{ Current} \]

\[\Psi_{\text{min}} \in [-0.1163, -0.1188] \text{ Collected*} \]

\[-0.1180 \text{ Current} \]

\[t_{\text{final}} = 20, \text{ time step} = 0.001 \]

\[\text{Re} = 100 \]

\[t_{\text{final}} = 50, \text{ time step} = 0.001 \]

\[\text{Re} = 1000 \]

Approved for public release.
Verification (Transient)

- Re=10000
- U(t) = 1
- Contour plots of \(\Psi \)
- \(t=2 \): agree within 2.8%
- \(t=8 \): agree within 4.4%
- Need to explore mesh and time step refinements
Verification (Sensitivity)

- Re=1000 with baseline mesh (101 × 101)
- U varies in time
- Determine sensitivity of H₂ about f = 1
- H₂ evaluated at t = 10
- Finite-difference sensitivity: δf = 0.0001
- *Sensitivities match to 6 significant digits*

\[
U(t) = \frac{1}{2} \left(1 - \cos(ft)\right)
\]

\[
H_2(x_{mon}) = \sum_k \left(\Psi_k^n\right)^2
\]

<table>
<thead>
<tr>
<th>(\frac{\partial H_2}{\partial f}) (Adjoint)</th>
<th>(\frac{\partial H_2}{\partial f}) (Finite Difference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.70771958780</td>
<td>4.7077182309</td>
</tr>
</tbody>
</table>

Approved for public release.
POD Data Compression for Sensitivity Analysis

- Same conditions as verification case
- Integration time of 10; 1000 time steps
- Collect snapshots once every 10 time steps
- Decimate snapshot set to coarsen
- Evaluate efficiency and accuracy of POD-based adjoint sensitivity analysis as function of number of snapshots and modes

On-the-fly, use the modes and the instantaneous modal amplitudes to reconstruct the flow solution

Convergence of Ψ-modes from 100 snapshots

Approved for public release.
Solution and POD Modes (Streamfunction)

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

1M ode 18 2

Mode 3

Mode 4

Mode 5

Approved for public release.
Efficiency and Accuracy

\[\frac{\partial H_2}{\partial f} \text{ using 100 snapshots} \]

<table>
<thead>
<tr>
<th></th>
<th>Full order</th>
<th>50 modes</th>
<th>20 modes</th>
<th>10 modes</th>
<th>5 modes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.707719587</td>
<td>4.707725353</td>
<td>4.711403732</td>
<td>4.724862963</td>
<td>3.121007234</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Error in [\frac{\partial H_2}{\partial f}]</th>
<th>50 modes</th>
<th>20 modes</th>
<th>10 modes</th>
<th>5 modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 snapshots</td>
<td>0.00012</td>
<td>0.078</td>
<td>0.36</td>
<td>-34</td>
</tr>
<tr>
<td>20 snapshots</td>
<td>–</td>
<td>1.4</td>
<td>3.2</td>
<td>-31</td>
</tr>
<tr>
<td>10 snapshots</td>
<td>–</td>
<td>–</td>
<td>1.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

20 snapshots = 2\% of time-history data
10 modes = 1\% of time-history data

Greatly decrease memory requirement at 2× cost: explore other POD uses

Approved for public release.
Goal: study transient sensitivity analysis in context of DOF reduction

- Identify best thickness distribution for rapidly actuated plate
- Nonlinear modeling of a flapping plate
- Minimize $\delta_{\text{ave}} = \text{time-averaged}\ \delta$
- 256 variables (element thicknesses w/ constraints)
- GBO via MATLAB ($fmincon$)

Resultant thickness distribution

Extension: Kinematic/Structural design for wing design with airloads (Stanford et al., SDM10)

$\omega = 7\text{Hz}$

ROM Adjoints \approx Free

5X design speed-up

Normalized design cost

δ_{ave}/L
Beam Design (Inertial Loads Only)

- Identify best area distributions for minimum and maximum time-averaged tip displaced.
- Co-rotational FEA formulation; 50 beam elements, each with a different sectional area.
- Side constraints on area; GBO via MATLAB (`fmincon`).
- Compute sensitivities with the adjoint formulation.

Some benefits of combining SE and ROM in time-periodic formulation.

Approved for public release.
Reliability-Based Design Optimization (RBDO)

Goal: Examine use of transient sensitivity analysis to design a plate wing that is both light and reliable

- Reliable: wing does not exhibit too severe a limit-cycle oscillation
- $U_\infty > U_{\text{flutter}} \rightarrow$ limit cycle oscillation
- Piston theory aerodynamics ($M_\infty > 1$)
- Nonlinear von Kármán plate FEA

Minimize mass of plate; constrain the probability that $LCO_{\text{amp}} > \delta$ ($P_F \leq \sigma$)

Approved for public release.
Contrasting Approaches

Deterministic Optimization

- **Success:** \(LCO_{\text{amp}} < \delta \)
- **Failure:** \(LCO_{\text{amp}} > \delta \)

Generally, the designed plate “moves” to the constraint boundary \((P_F \approx \frac{1}{2}) \)

\[
\begin{align*}
\text{min} \quad & \text{weight} = f(d) \\
\text{subject to:} \quad & g(x(d, E, M_\infty)) > 0; \text{ side constraints on } d \\
& g(x(d, E, M_\infty)) = \delta - LCO_{\text{amp}} = 0
\end{align*}
\]

\(x = \text{response variables} \)
\(d = \text{design variables} \)

RBDO

- **Failure:** \(LCO_{\text{amp}} > \delta \)
- **Success:** \(LCO_{\text{amp}} < \delta \)

Generally, the designed plate “moves” away from the constraint boundary a “safe” distance \((P_F = \sigma) \)

\[
\begin{align*}
\text{min} \quad & \text{weight} = f(d) \\
\text{subject to:} \quad & 1 - \text{Prob}(g < 0)/\sigma \geq 0; \text{ side constraints on } d
\end{align*}
\]

Approved for public release.
RBDO Formulation

- M_∞ and E are chosen to be uncertain (normal)
- Map to uncorrelated random variables u_1 and u_2 in standard normal space
- Compute Most Probable Point (MPP) and reliability index β
- Approximate failure surface as linear: First Order Reliability Method (FORM)
- Compute probability of failure, $P_F = P_F(\beta)$
- Meet P_F constraint using analytical gradients

1. For a given structure, compute MPP using gradient based optimization: require sensitivities of g to u_1 and u_2

2. Reduce weight while meeting P_F constraint using gradient based optimization: require sensitivities of P_F to d_i (found from sensitivities of g to d_i)

Adjoints of transient solutions used to compute sensitivities of g to d_i
RBDO and SVM Results

1. Basudhar used Support Vector Machine and adaptive sampling to approximately construct failure surface
2. Computed P_F with MCS on SVM boundary (55 samples)
3. Computed P_F with QMCS (Lambe, MSSRC)

<table>
<thead>
<tr>
<th>Method</th>
<th>P_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORM</td>
<td>0.0197</td>
</tr>
<tr>
<td>MCS (10^6)</td>
<td>0.0248</td>
</tr>
<tr>
<td>QMCS (10^4)</td>
<td>0.0244</td>
</tr>
</tbody>
</table>

RBDO Step **Cost (MATLAB, single CPU)**
Simulation 10 minutes
Adjoint 5 minutes
MPP 1 hour
Optimization 4 hours (deterministic), 12 hours (probabilistic)
Recent Activities: Rigid-Body MAV Motions

- Start to investigate impact of rigid-body motion on MAV performance
- Prof. Haibo Dong (WSU), Mr. Zachary Gaston (WSU)
- Mr. Tim Broering (UL)

Need to include rigid-body motions and body flexibility in bio-inspired MAV models

Approved for public release.
Plan for Rigid-Body Coupling

• Emphasize passive motions first: falling bodies in quiescent flow
 – Modify high-fidelity tools to repeat 2D simulations and extend in 3D; validate at WSU with high-speed photography (want comparisons)
 – Calibrate quasi-steady models (like those used in flapping)

• Examine influences of gust and variability on falling motions
 – Introduce variability into quasi-steady models (e.g., how is seed dispersal impacted by winds?)

• Re-examine design procedures that have been developed so far: want MAVs that are robust to gust
Some Typical Motions

- $c =$ chord
- $h =$ thickness
- $\rho_f =$ water
- $\rho_s =$ aluminum

$\beta = h/c = 1/14$

flutter: $\beta = h/c = 1/5$

- Will explore impact of variability (physical and model) on distribution of landing locations
- Developed transient sensitivities (direct): role in selecting bodies with more desirable falling characteristics?
High-Fidelity Results

Re = 40 (Stationary)

Overture

CD = 1.88

Re = O[10^3] (Falling)

Preliminary VICAR3D result

CD = 1.84

Approved for public release.
Recent Activities (cont.)

• Start to explore role of actuation mechanism in MAV design
 – Investigate physical interactions between a flapping wing and the mechanism that flaps the wing (e.g., transmission of inertial loads)

• Developing compliant mechanisms via topological optimization
 – Link mechanism with generated inertial/aero loads (MAO 2010)

Understand/modeling energy transfers between mechanism and wing critical
Concluding Remarks

• Sensitivity analysis of transient/time-periodic systems serves an important role for design of both large and small aircraft
 – Constraint boundaries often nonlinear (LCO and aeroelastic response in gust); strive for physics-based approaches not reliant on safety factors
 – Essential for design of flapping wing MAVs; strive for physics-based approaches that account for gust

• Lessons learned through unsteady sample problems
 – POD is a straightforward means for data compression in sensitivity analysis for large systems; extensions using POD ripe for study
 – Adjoint vectors in ROM formulation computed virtually for free (tailoring of structure for nonlinear response during rotary actuation)
 – Adjoint-based sensitivities work well in an RBDO context; want to extend (e.g., transonic, SVM, SORM) based on lessons learned

• Interesting departure points for further study: variability in motion subject to gust, mechanism design
Recent Publications

Questions?
AMP Team Composition (WPAFB)

Mission: *Integrate multiple disciplines to discover and exploit new phenomena for system optimization and assessment of revolutionary aerospace vehicles*

Analysis Methods for Prototypes
- Dr. José Camberos – On detail as RB Deputy Chief Scientist
- *Dr. Chris Chabalko – Postdoc (NRC, UTC)*
- Dr. Ned Lindsley – Supporting prototype validation/assessment
- *Dr. Aaron McClung – Civil Servant, formerly NRC*
- Mr. John Moore – Undergraduate Co-op (University Florida)
- Mr. Michael Robbeloth – Computer Scientist, DSA
- Dr. Rich Snyder
- *Dr. Bret Stanford – Postdoc (NRC)*
- Dr. Phil Beran - Lead

Approved for public release.
Methods Development Strategy

Goal: Multifidelity framework built on new methods

Development of New Methods
- Time-Periodic Analysis
- Sensitivity Analysis
- Reduced Order Modeling
- Uncertainty Characterization

Application and Extension of High-Fidelity Methods
- Navier-Stokes (OVERFLOW)
- Beams, Plates, Shells models
- Aeroelasticity
- Vortex methods (medium fidelity)

Validation through physical experiment
- Water channel (OL, AVT-149)
- Free flight (TU Delft, AVT-184)
- Aeroelastic ground-test facility (Parker)

Develop methods: start with low-dimensional formulations and move towards high-dimensional.

Characterize physical limitations of lower fidelity approaches.

Assess validity of all methods.

Approved for public release.
Application to Insect Wing

Feathering angle
Wing axis (in X-Y plane)

Prescribed (ψ) and realized (η) angles
- mass-spring-damper
- inertial & aero loads

Quasi-steady (QS) aerodynamics (Berman & Wang)

Power reduction from initial design:
- 55% for unconstrained acceleration
- 40% for constrained acceleration

Looking at inertial power contribution

Optimized fruitfly wing kinematics (235 Hz)

Approved for public release.
High-Fidelity Analysis

Understanding Complex Physics

- Study Hawkmoth physics using Navier-Stokes (NS) simulation
- Collaboration with AFIT
- Hawkmoth kinematics (hover)
- What’s new?
 - OVERFLOW 2.1 Elastic (5th/2nd-order in space/time)
 - Prescribed wing deformations
 - Variations in kinematics
- Moderate flexibility increases hover efficiency

<table>
<thead>
<tr>
<th>Planform</th>
<th>Study</th>
<th>Fx (N)</th>
<th>Fy (N)</th>
<th>Fz (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
<td>Current Work</td>
<td>7.24e-04</td>
<td>-1.46e-03</td>
<td>7.26e-03</td>
</tr>
<tr>
<td>Manduca sexta</td>
<td>Current Work</td>
<td>8.42e-04</td>
<td>-1.65e-03</td>
<td>6.16e-03</td>
</tr>
<tr>
<td>Agrius convoluli</td>
<td>Aono and Liu [1]</td>
<td>1.20e-03</td>
<td>-1.20e-03</td>
<td>8.48e-03</td>
</tr>
</tbody>
</table>

Approved for public release.