Inversion for Geoacoustic Model Parameters in
Range-Dependent Shallow Water Environments

N. Ross Chapman
School of Earth and Ocean Sciences
University of Victoria
PO Box 3055
Victoria, B.C. V8W 3P6
phone: (250) 472-4340 fax: (250) 472-4620 email: chapman@uvic.ca

Award Number: N0001403-1-0131 / Shallow-water acoustics

LONG TERM GOALS

The ability to predict sound propagation in shallow water is limited by the knowledge of the
geoacoustic properties of the ocean bottom. The long term goals of this research are: (1) to develop
full field inversion methods for estimating parameters of geoacoustic models of the ocean bottom and
the associated uncertainties in the model parameter values; and (2) to evaluate the performance of the
geoacoustic inversion techniques for applications over a broad frequency band in range dependent
shallow water environments. This work is set within the wider context of research to understand the
interaction of sound with the ocean bottom and determine the critical geoacoustic parameters that
affect sound transmission in shallow water.

OBJECTIVES

The impact of variability in the sediment properties has been the focus of research in shallow water
acoustics for several years. In SW06 a simple experiment based on a circular ship track around a
vertical array was designed to study the azimuthal variation of geoacoustic model parameters. This
report applies an inversion technique based on ray travel time of mid-frequency (1.1-4.5 kHz) sound
signals to estimate geoacoustic profiles and study the heterogeneity of the sediment properties within
the area of the circle. The approach is applied to circle data from two different sites that represented
the two focal sites of the SW06 experiment: the MORAY site of ‘outer shelf wedge’ sediment that is
clay-rich and stiff; and the SWAMI32 site where the outer shelf wedge sediment is overlain by a thin
layer of medium sand. This work was done in collaboration with Dr. Y-M Jiang.

The recent ONR-sponsored research program in benchmarking geoacoustic inversion methods has
demonstrated the maturity of present-day inversion methods against synthetic data for range-dependent
shallow water environments (Chapman et al, 2003). A critical unresolved issue is the evaluation of the
performance of the inversion methods for estimating geoacoustic profiles in real ocean environments.
The experiments carried out in the ONR SW06 Experiment during August-September 2006 on the
New Jersey continental shelf provided high quality data over a broad frequency band from 50 Hz to 20
kHz that can be used for evaluating and comparing the performance of several different techniques,
including matched field inversion, reflection coefficient and bottom loss inversion, phase and group
velocity dispersion and wavenumber extraction inversions. This report discusses initial performance
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Inversion for Geoacoustic Model Parameters in Range-Dependent Shallow Water Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Victoria, School of Earth and Ocean Sciences, PO Box 3055, Victoria, B.C. V8W 3P6,

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
- a. REPORT unclassified
- b. ABSTRACT unclassified
- c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
8

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39.18
comparisons of geoacoustic inversion methods that were used to estimate parameters of geoacoustic profiles in SW06.

APPROACH

The research makes use of data recorded on two different arrays: (1) the Marine Physical Laboratory (MPL) vertical line arrays in collaborative SW06 experiments with Drs. W. S. Hodgkiss and P. Gerstoft; and (2) the SWAMI L-shaped array deployed by Dr. David Knobles of the Applied Research Laboratories in Austin TX. These data provide the means to estimate geoacoustic model parameters over the band of frequencies of interest. Particularly, the frequency dependence of sound speed and attenuation in the sediment can be studied. The estimated models are based on Bayesian ray theory inversion of the mid frequency LFM sweep data.

Description of the Experiments: The shelf break location (Fig. 1) was specifically chosen to amplify the impact on geoacoustic inversion performance of uncertainties in the water sound speed profile due to internal waves, the shelf break front, a salinity/density and current that meanders near the shelf edge, and the frequent presence of warm-core eddies shed from the Gulf Stream. The MPL vertical array consisted of 16 hydrophones equally spaced at 3.75 m, with the bottom-most sensor 8.2 m above the sea floor. Water depth at the site was 79 m. The SWAMI array consisted of 32 hydrophones in an L-shaped configuration: ten phones vertically in the water and 20 phones stretched over ~200 m on the sea floor. Water depth at the site was 68 m. Mid-frequency sound signals over the band 1.5–4.5 kHz were generated by a separate sound source (an ITC 2015) that was towed by the R.V. Knorr at a depth of 25 m.

High resolution chirp sonar surveys carried out to map the bottom and sub-bottom structure in the region revealed well-resolved structure down to about 30 m, most prominently showing the ‘R’ reflector at about 20 m. This interface, which is pervasive in the region, was overlayed with alternating layers of sand and finer clay. In situ sediment probes were also deployed at locations around the MORAY site (Jie et al, 2008). The preliminary analysis of these data indicated a sound speed value of around 1620 m/s for the sea floor sediments near the MPL vertical array. However, the sea floor sediment type varied significantly over the region, most notably at sand ridges roughly parallel to the shelf break and a few kms north of the track at the SWAMI site.

Mid frequency data: Circular track experiments were carried out at very short ranges from the two different arrays. Previously we reported the results of the experiment at the MPL array site (Jiang et al., 2009). This report outlines the results of the short range circle experiment (~170 m; WP 55 in Figure 1) at the SWAMI32 array to determine high resolution structure of the geoacoustic model. The source was towed in the water at a depth of 25 m, and transmitted a 1-s LFM (linear frequency modulation) sweep signal over the mid-frequency band of 1.1-2.9 kHz. The match-filtered signal from the hydrophones of the horizontal component of the array showed a sub-bottom reflector at a relatively shallow depth, and a very weak signal from the deeper R-reflector. Variation in the signal strength of the shallow reflector for hydrophones along the array indicated significant sub-bottom heterogeneity in the vicinity.
WORK COMPLETED

An inversion method was developed based on analysis of the ray amplitudes to characterize the structure and geoacoustic properties of the sediment material, and the inversion was applied successfully to the circle experiment data at the SWAMI32 site.

Initial work was done to collect and compare the results of different inversion techniques. Preliminary comparisons are shown here for inversions from some of the experiments at the MORAY site.

RESULTS

Mid Frequency inversions:
The experimental geometry of the circle experiment is shown in Figure 2. Data were selected from the sound transmissions near the locations of the two CTDs (CTDs 44 and 45) shown in the figure. The matched filtered signals for one-minute averages of data for all the hydrophones along the horizontal array are shown in Figure 2 for one of the LFM transmissions. Only the shallow sub-bottom reflector is seen for this source position. The matched filtered signals for hydrophone 31 (about 200 m from the VLA) are shown in Figure 3 for a segment of about 4 minutes near the end of the circle. In this figure, each pulse is transmitted from a different source position along the track. The variability of the shallow sub-bottom reflector signal shows qualitatively the spatial scale of the heterogeneity in the sub-bottom structure at this site.
A multi-step inversion method was developed to invert for the sound speed and thickness of the material in the first sub-bottom layer. It is believed that this layer is a thin layer of medium sand that overlies the outer wedge shelf sediment at the New Jersey shelf break. The first step in the inversion was to estimate the location of the array elements. This was done using the pulses at the beginning of the circle track that were close in time to the CTD measurement. For these pulses, the sound speed profile in the water was known, so a linear travel time inversion using direct path data recorded on the vertical array could provide the array geometry at the start of the circle. It was assumed that the VLA position did not change during the rest of the track. Subsequently, the source positions and the horizontal array positions could be determined in a second stage of the inversion. This stage inverted for the geometry and the sound speed to match travel time data recorded on the bottom VLA sensor and the horizontal array hydrophones. With the assumed geometry, the third stage used travel time difference data for the direct path and the sub-bottom reflector in a non-linear inversion to determine the sound speed and thickness of the sand layer. The results of the inversion are shown in Figure 5, which displays the marginal probability distributions of the parameters for two different source locations (see Figure 2). The estimated values of the sound speed are in excellent agreement with expected values for medium sand, and with estimated values reported by Knobles (Stott et al.) at the same site.
Figure 3. Matched filtered signals from one pulse transmission received at all the hydrophones on the horizontal array. The display is aligned on the direct path signal at about 0.017s. The shallow sub-bottom reflector follows the direct path arrival, and a second sub-bottom signal is seen at hydrophones 30-32. The sea surface reflection is the strong signal that arrives at 0.026-0.03 s.

Figure 4. The matched filtered signals at hydrophone 31 near the end of the horizontal array for about 4 minutes near the end of the circle track. The variability of the two sub-bottom reflections is evident in the display.
Comparison of inversion techniques:
Preliminary results of performance comparison of the inversion techniques that were applied in SW06 are shown in Figure 6 for the estimation of sound speed of the sea floor sediment in the vicinity of the MORAY site. The techniques included direct measurement using the SAMS (Seafloor Acoustic Measurement System) and inferred values from various inversion methods: matched field inversion; linear inversion of modal wavenumbers; modal dispersion analysis; and bottom reflection loss. Although there is a variation of about 50 m/s over the various estimates, it is not known at this stage how significant this is in making predictions of the acoustic field. The variation may well reflect the spatial heterogeneity in the sea floor sound speed over the region that was studied.
IMPACT/APPLICATIONS/TRANSITIONS

The assessment of performance of the inversion techniques will provide new information about the limitations and advantages of the different methods.

RELATED RESEARCH

The data from the SW06 geoacoustic experiments are high quality data that can serve as benchmark standards for evaluating the performance of geoacoustic inversion methods. The research related to the analysis and interpretation of data from the geoacoustic experiments in SW06 is connected with the research projects of the following: W. S. Hodgkiss and P. Gerstoft (MPL, SCRIPPS); D. Knobles (ARL:UT); G.V. Frisk (Florida Atlantic); K. Becker (ARL Penn State); P. Dahl and D.J. Tang (APL UW); J. Miller (University of Rhode Island), J. Goff, U of Texas at Austin and J. Lynch (WHOI). The overall goal of this group is to characterize the geoacoustic environment and understand mechanisms of the interaction of sound with the ocean bottom. Comparison of the results from the different techniques will provide new understanding of the strengths and limitations of present day inversion techniques.

REFERENCES

Jie, Y., Dajun Tang, and Kevin L. Williams, Direct measurement of sediment sound speed in Shallow Water ’06, JASA EL, EL116-EL121, 2008.

PUBLICATIONS

