1. REPORT DATE
1998

2. REPORT TYPE

3. DATES COVERED
00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
The Effects of Aggregation and Disaggregation on Particle Size Distributions and Water Clarity in the Coastal Ocean

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Dalhousie University, Department of Oceanography, Halifax, Nova Scotia, Canada B3H 4J1,

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002252.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT
classified
b. ABSTRACT
c. THIS PAGE
classified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
2

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
The Effects of Aggregation and Disaggregation on Particle Size Distributions and Water Clarity in the Coastal Ocean

Paul S. Hill
Department of Oceanography
Dalhousie University
Halifax, Nova Scotia, CANADA B3H 4J1
phone: (902) 494--2266 fax: (902) 494--3877 e-mail: paul.hill@dal.ca
Award #: N00014--95--1--0420
http://www.phys.ocean.dal.ca/~phill

LONG-TERM GOAL

The long-term goal of this research is to develop tools to quantitatively predict the effect of fine siliciclastics on water clarity in the coastal ocean. Scattering of light by suspended particles depends on sediment concentration, composition, and size distribution. Particle size distributions in coastal waters are dynamic because high concentrations of suspended sediment in coastal waters favor frequent encounter between particles. These encounters lead to the formation of large macroaggregate particles, or flocs, with diameters greater than 0.5 mm. While aggregation modifies the size distribution by building larger particles, variable and energetic turbulence in coastal waters can modify the size distribution by disrupting aggregates. Predictive knowledge of scattering depends on understanding of the conditions under which aggregation and turbulence-induced disaggregation alter the size distribution and of the form of the size distribution that these processes combine to produce.

OBJECTIVES

This research has three primary objectives. The first is to observe spatial and temporal variability in macroaggregate size distributions in situ in the bottom boundary layer (BBL) at the Coastal Mixing and Optics field site. The second is to relate observed size distributions to small particle size distributions, turbulent kinetic energy (tke), and optical properties in the BBL. The third is to extend BBL aggregation models to conditions of unsteady flow.

APPROACH

Time-series photographs of macroaggregates have been taken with a bottom-tripod-mounted floc camera on the continental shelf in the mid-Atlantic Bight during ONR's Coastal Mixing and Optics deployment. Data synthesis involves comparison of in situ macroaggregate size distributions with small particle size distributions generated with an in-situ, laser particle sizer (LISST) deployed on the same tripod as the camera (Agrawal, Sequoia), with turbulent kinetic energy dissipation rate measurements made on a nearby tripod (Trowbridge, WHOI), and with optical properties monitored on the same tripod as the camera (Dickey, UCSB). Numerical modelling involves collaboration with Pat Wiberg (UVa) to incorporate new methods for treating aggregation and disaggregation into conventional finite-difference approaches to solving advection-diffusion-reaction equations.
WORK COMPLETED

During the CMO field effort, 250 photos were collected. Methods have been developed for analyzing size distributions, archiving data, and presenting data interactively on the world wide web. A manuscript is in preparation describing destruction of macroaggregates during storms. In collaboration James Syvitski, his FLOC camera was deployed in Alaska in profiling and moored mode. Overall, 980 images from three fjords were collected in May, 1995. Excess-density-versus-diameter relationships have been produced from data collected in the moored deployment, and a manuscript was published in 1998. All other images have been analyzed. Collaboration with Pat Wiberg on incorporating aggregation into her sediment transport model began during the summer of 1996.

RESULTS

Data on macroaggregate size distributions, waves, and currents indicate that turbulence does not strongly influence macroaggregate size when tke is low to moderate, but that macroaggregates are destroyed under energetic forcing. This result suggests that forces other than turbulence, namely those applied to macroaggregates during sinking, limit macroaggregate size when tke is low to moderate. This hypothesis explains why measured macroaggregate settling velocities across diverse environments, including the measurements made in Alaskan fjords, are so uniform.

IMPACT/APPLICATION

Fine sediment suspensions can likely be treated as a two-state system. When tke is low to moderate, the majority of suspended mass is contained in macroaggregates that sink at speeds of 1 mm s \(^{-1}\). When energy levels are high, macroaggregates are destroyed. Further work with Agrawal will clarify the fate of destroyed macroaggregates.

TRANSITIONS

The camera technology developed in this study has been adopted in part by Syvitski for construction of a DURIP-funded floc camera.

RELATED PROJECTS

With NSERC (Canadian) funding, the spectral response of optical backscatter to particle size distribution is being explored. Collaborator is Jon Grant (Dalhousie).

REFERENCES

