Tetyana Margolina
Research Associate

Reviewed by: Released by:

Jeffrey Paduan Karl Van Bibber
Department of Oceanography Vice President and Dean of Research
High Frequency Acoustic Recording Package

Data Summary Report

Authors: Margolina, Tetyana

Dates Covered: January 30, 2009 – April 30, 2009

Frequency Band: 10 Hz – 100 kHz

Sampling Frequency: 200 kHz

Deployment Duration: 5 minutes during each 10 minute interval

Subject Terms:
- Marine mammals
- Passive acoustic monitoring
- HARP
- Long-term spectral average
- Baleen whales
- Odontocetes
- Fin whales
- Humpback whales
- Sperm whales
- Pacific white-sided dolphins
- Risso’s dolphins

Abstract

This report provides an initial summary of marine mammal vocalizations detected and identified in records from the sixth HARP deployment between February 1, 2009 and April 30, 2009. Data was acquired in the 10 Hz – 100 kHz frequency band at a 200 kHz sampling frequency for 5 minutes during each 10 minute interval. Long-term spectral averages were created for three frequency bands (10 Hz–100 Hz, 1 kHz–5 kHz, 5 kHz–100 kHz) and then scanned for marine mammal vocalizations. Detected calls of fin whales, humpback whales, as well as echolocations of sperm whales, beaked whales, and dolphins are presented as occurrence time diagrams.

Security Classification: Unclassified

Limitation of Abstract: UU

Number of Pages: 35

Telephone Number: Please do not return your form to the above address.
ABSTRACT

This summary continues a series of reports on the project, which seeks to assemble a census of marine mammal vocalizations in the high-frequency acoustic recording package (HARP, Wiggins and Hildebrand, 2007) data collected by the NPS Oceanography Department off Point Sur beginning in October 2006. The present report provides an initial summary of marine mammal vocalizations detected and identified in records from the sixth HARP deployment between February 1, 2009 and April 30, 2009. Data was acquired in the 10 Hz – 100 kHz frequency band at a 200 kHz sampling frequency for 5 minutes during each 10 minute interval. Long-term spectral averages were created for three frequency bands (10 Hz–1000 Hz, 1 kHz–5 kHz, 5 kHz–100 kHz) and then scanned for marine mammal vocalizations. Detected calls of fin whales, humpback whales, as well as echolocations of sperm whales, beaked whales, and dolphins are presented as occurrence time diagrams.
TABLE OF CONTENTS

I. DATA ..1
II. RESULTS ...4
LIST OF REFERENCES ...13
INITIAL DISTRIBUTION LIST ..14
LIST OF FIGURES

Figure 1. PS06 HARP deployment location ...1
Figure 2. Schematic diagram showing details of the PS06 HARP.2
Figure 3. PS06 HARP schedule from 06:00:00 PM to 11:58:45 PM of each day3
Figure 4. Fin whale calls in 75 s bins ..6
Figure 5. Humpback whale vocalizations in 75 s bins ...7
Figure 6. Sperm whale echolocation clicks in 75 s bins ...8
Figure 7. Echolocation clicks of Pacific white-sided dolphin in 75 s bins9
Figure 8. Risso’s dolphin echolocation clicks in 75 s bins10
Figure 9. Echolocation clicks and whistles of unidentified dolphins in 75 s bins11
Figure 10. Beaked whale echolocation clicks in 75 s bins12
LIST OF TABLES

Table 1. Summary of identified marine mammal vocalizations. ..5
I. DATA

The PS06 HARP was deployed on top of Sur Ridge at 36°23.332’N, 122°18.396’W on January 30, 2009 and recovered on April 30, 2009. The instrument location is shown in Fig. 1. Bottom depth at the deployment site was 836 m. A schematic diagram of the PS06 HARP mooring (courtesy of Ms. Marla Stone, Naval Postgraduate School) is given in Fig. 2. Temperature, salinity, and current data collected on the mooring have been described by Zamora (2009).

Figure 1. Chart showing PS06 HARP deployment location (red dot) to the west of Point Sur, California. The scale to the right indicates bottom depth in kilometers. Isobaths (gray lines) are shown at 200 m interval.
Figure 2. Schematic diagram showing details of the PS06 HARP. Note that objects and distances are not drawn to scale.
Data was acquired at a 200 kHz sampling frequency for 5 minutes during each ten minutes. There were timing errors on April 2-3, 2009. The PS06 HARP deployment provided a total of 1067 hours of data over the 90 days with recordings available from February 1 to April 30, 2009 (see Fig. 3).

![Figure 3. PS06 HARP schedule from 06:00:00 PM to 11:58:45 PM of each day. Each cell corresponds to one raw file of 75 s duration. Red crosses denote records of non-standard length.](image)

The PS06 HARP data were manually scanned for marine mammal vocalizations using the “logger” version of the Scripps *Triton* software (v1.7b.20100426_loggers) as described in Technical report # NPS-OC-10-003 “High Frequency Automatic Recording Package Data Summary Report PS05, August 4, 2008 – January 6, 2009” (available online at http://edocs.nps.edu/npspubs/scholarly/TR/2010/NPS-OC-10-003.pdf).
II. RESULTS

Table 1 summarizes detected and identified marine mammal vocalizations for the PS06 HARP deployment. Figs. 4–10 illustrate occurrence time for different species and call types in 75 s bins.

No vocalizations of blue whales were detected in the PS06 records. This agrees with known patterns of blue whale migration and vocalization seasonality (e.g., see Burthernshaw, 2004) in the northeastern Pacific.

Observed fin whale calls were mostly 20 Hz, and were present almost exclusively in February 2009 (Fig. 4). This is also compliant with known seasonality of fin whale calling along the California coast, which usually peaks in midwinter (e.g., see Watkins et al., 2000).

Humpback whale vocalizations were nearly continually present in PS06 data in February – first half of March 2009, and more sparsely in April 2009 (Fig. 5).

Sperm whale clicks were evenly distributed From February, 2009 to April, 2009 (Fig. 6).

Detected dolphin vocalizations included echolocation clicks, whistles, and burst pulses (Figs. 7–9). Dolphins were present throughout the PS06 deployment, about 70% of them identified as Pacific white-sided dolphins, which intensified during night time from March to April (Fig. 7). Risso’s dolphins were detected during only 7 days: two in mid February and five in late March (Fig. 8).

Beaked whale vocalizations, albeit sparse, were present throughout the whole PS06 deployment from February to April, 2009 (Fig. 10). During three days (two in the first half of February and one in the second part of April) upswept clicks of ~20kHz peak frequency were identified. It is suggested that these echolocation clicks were produced by Baird’s beaked whales. Cuvier’s and Cuvier’s-like upswept echolocation pulses were identified in about 70% of total vocalization time.
Table 1. Summary of identified marine mammal vocalizations.

<table>
<thead>
<tr>
<th>Species</th>
<th>Call type</th>
<th>Hours of vocalizations</th>
<th>Percentage of total recordings</th>
<th>Days with vocalizations</th>
<th>Percentage of total deployment duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fin whale</td>
<td>20 and 50 Hz</td>
<td>24</td>
<td>2%</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>Humpback whale</td>
<td>various</td>
<td>245</td>
<td>23%</td>
<td>30</td>
<td>33%</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>echolocation</td>
<td>179</td>
<td>17%</td>
<td>40</td>
<td>44%</td>
</tr>
<tr>
<td>Beaked whale</td>
<td>echolocation</td>
<td>27</td>
<td>3%</td>
<td>25</td>
<td>28%</td>
</tr>
<tr>
<td>Dolphins (total)</td>
<td>echolocation/whistles</td>
<td>298</td>
<td>28%</td>
<td>83</td>
<td>92%</td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>echolocation</td>
<td>9</td>
<td>1%</td>
<td>7</td>
<td>8%</td>
</tr>
<tr>
<td>Pacific white-sided dolphin</td>
<td>echolocation/whistles</td>
<td>205</td>
<td>19%</td>
<td>71</td>
<td>79%</td>
</tr>
<tr>
<td>Unidentified dolphin</td>
<td>echolocation/whistles</td>
<td>83</td>
<td>8%</td>
<td>54</td>
<td>60%</td>
</tr>
</tbody>
</table>
Figure 4. Fin whale calls in 75 s bins.
Figure 5. Humpback whale vocalizations in 75 s bins.
Figure 6. Sperm whale echolocation clicks in 75 s bins.
Figure 7. Echolocation clicks of Pacific white-sided dolphin in 75 s bins.
Figure 8. Risso’s dolphin echolocation clicks in 75 s bins.
Figure 9. Echolocation clicks and whistles of unidentified dolphins in 75 s bins.
Figure 10. Beaked whale echolocation clicks in 75 s bins.
LIST OF REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>Initial Distribution List</th>
</tr>
</thead>
</table>
| 1. | Defense Technical Information Center
 | 8725 John J. Kingman Rd., STE 0944
 | Ft. Belvoir, VA 22060-6218 |
| 2. | Dudley Knox Library, Code 013
 | Naval Postgraduate School
 | Monterey, CA 93943-5100 |
| 3. | Erin Oleson
 | National Marine Fisheries Service
 | Pacific Islands Fisheries Science Center
 | Honolulu, HI |
| 4. | John Hildebrand
 | Scripps Institution of Oceanography
 | University of California
 | La Jolla, CA |
| 5. | John Calambokidis
 | Cascadia Research Collective
 | Olympia, WA |
| 6. | Greg Schorr
 | Cascadia Research Collective
 | Olympia, WA |
| 7. | Erin Falcone
 | Cascadia Research Collective
 | Olympia, WA |
| 8. | Ching-Sang Chiu
 | Naval Postgraduate School
 | Monterey, CA |
| 9. | Curtis A. Collins
 | Naval Postgraduate School
 | Monterey, CA |
| 10. | Thomas A. Rago
 | Naval Postgraduate School
 | Monterey, CA |
11. Tetyana Margolina
Naval Postgraduate School
Monterey, CA 1

12. Chris Miller
Naval Postgraduate School
Monterey, CA 1

13. John Joseph
Naval Postgraduate School
Monterey, CA 1

14. Katherine Whitaker
Pacific Grove, CA 1

15. Frank Stone
CNO(N45)
Washington, D.C. 1

16. Jay Barlow
Southwest Fisheries Science Center, NOAA
La Jolla, CA 1

17. CAPT Ernie Young, USN (Ret.)
CNO(N45)
Washington, D.C. 1

18. Dale Liechty
CNO(N45)
Washington, D.C. 1

19. Dave Mellinger
Oregon State University
Newport, OR 1

20. Kate Stafford
Applied Physics Laboratory
University of Washington
Seattle, WA 1

21. Sue Moore
NOAA at Applied Physics Laboratory
University of Washington
Seattle, WA 1
22. Petr Krysl
University of California
La Jolla, CA

23. Mark McDonald
Whale Acoustics
Bellvue, CO

24. Ted Cranford
San Diego State University
San Diego, CA

25. Monique Fargues
Naval Postgraduate School
Monterey, CA

26. Mary Ann Daher
Woods Hole Oceanographic Institution
Woods Hole, MA

27. Heidi Nevitt
NAS North Island
San Diego, CA

28. Rebecca Stone
Naval Postgraduate School
Monterey, CA

29. Melissa Hock
Scripps Institution of Oceanography
University of California
La Jolla, CA

30. Sean M. Wiggins
Scripps Institution of Oceanography
University of California
La Jolla, CA

31. E. Elizabeth Henderson
Scripps Institution of Oceanography
University of California
La Jolla, CA

16
32. Gregory S. Campbell
Scripps Institution of Oceanography
University of California
La Jolla, CA

33. Marie A. Roch
San Diego State University
San Diego, CA

34. Anne Douglas
Cascadia Research Collective
Olympia, WA

35. Julie Rivers
COMPACFLT
Pearl Harbor, HI

36. Jenny Marshall
Naval Facilities Engineering Command
San Diego, CA

37. Chip Johnson
COMPACFLT
Pearl Harbor, HI

38. CDR Len Remias
U.S. Pacific Fleet
Pearl Harbor, HI

39. LCDR Robert S. Thompson
U.S. Pacific Fleet
Pearl Harbor, HI

40. Jene J. Nissen
U. S. Fleet Forces Command
Norfolk, VA

41. W. David Noble
U. S. Fleet Forces Command
Norfolk, VA

42. David T. MacDuffee
U. S. Fleet Forces Command
Norfolk, VA
43. Keith A. Jenkins
Naval Facilities Engineering Command, Atlantic
Norfolk, VA

44. Joel T. Bell
Naval Facilities Engineering Command, Atlantic
Norfolk, VA

45. Mandy L. Shoemaker
Naval Facilities Engineering Command, Atlantic
Norfolk, VA

46. Anurag Kumar
Naval Facilities Engineering Command, Atlantic
Norfolk, VA

47. Merel Dalebout
University of New South Wales
Sydney, Australia

48. Robin W. Baird
Cascadia Research Collective
Olympia, WA

49. Brenda K. Rone
National Marine Mammal Laboratory
Seattle, WA

50. Phil Clapham
National Marine Mammal Laboratory
Seattle, WA

51. Laura J. Morse
National Marine Mammal Laboratory
Seattle, WA

52. Anthony Martinez
NOAA Southeast Fisheries Science Center
Miami, FL

53. Darlene R. Ketten
Woods Hole Oceanographic Institution
Woods Hole, MA
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.</td>
<td>David C. Mountain</td>
<td>Boston University</td>
<td>Boston, MA</td>
<td>1</td>
</tr>
<tr>
<td>55.</td>
<td>Melissa Soldevilla</td>
<td>Duke University</td>
<td>Durham, NC</td>
<td>1</td>
</tr>
<tr>
<td>56.</td>
<td>Brandon L. Southall</td>
<td>Southall Environmental Associates, Inc.</td>
<td>Santa Cruz, CA</td>
<td>1</td>
</tr>
<tr>
<td>57.</td>
<td>David Moretti</td>
<td>NUWC</td>
<td>Newport, RI</td>
<td>1</td>
</tr>
<tr>
<td>58.</td>
<td>Michael Weise</td>
<td>Office of Naval Research, Code 32</td>
<td>Arlington, VA</td>
<td>1</td>
</tr>
<tr>
<td>59.</td>
<td>Dan Costa</td>
<td>University of California, Santa Cruz</td>
<td>Santa Cruz, CA</td>
<td>1</td>
</tr>
<tr>
<td>60.</td>
<td>Lori Mazzuca</td>
<td>Marine Mammal Research Consultants, Inc.</td>
<td>Honolulu, HI</td>
<td>1</td>
</tr>
<tr>
<td>61.</td>
<td>Jim Eckman</td>
<td>Office of Naval Research</td>
<td>Arlington, VA</td>
<td>1</td>
</tr>
<tr>
<td>62.</td>
<td>Ari Friedlaender</td>
<td>Duke University</td>
<td>Beaufort, NC</td>
<td>1</td>
</tr>
<tr>
<td>63.</td>
<td>CAPT Robin Brake</td>
<td>U.S. Navy</td>
<td>Washington, DC</td>
<td>1</td>
</tr>
<tr>
<td>64.</td>
<td>Mary Grady</td>
<td>Southwest Fisheries Science Center</td>
<td>La Jolla, CA</td>
<td>1</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Affiliation</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Lisa Ballance</td>
<td>Southwest Fisheries Science Center</td>
<td>La Jolla, CA</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Angela D’Amico</td>
<td>SPAWAR</td>
<td>San Diego, CA</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Amy Smith</td>
<td>Science Applications International Corporation</td>
<td>McLean, VA</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Peter Tyack</td>
<td>Woods Hole Oceanographic Institution</td>
<td>Woods Hole, MA</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Ian Boyd</td>
<td>University of St. Andrews</td>
<td>St. Andrews, Scotland, UK</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Dr. Simone Baumann-Pickering</td>
<td>Scripps Institution of Oceanography</td>
<td>La Jolla, CA</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Dr. Mariana L. Melcón</td>
<td>Scripps Institution of Oceanography</td>
<td>La Jolla, CA</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Amanda Cummins</td>
<td>Scripps Institution of Oceanography</td>
<td>La Jolla, CA</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Lauren Roche</td>
<td>Scripps Institution of Oceanography</td>
<td>La Jolla, CA</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Hannah Bassett</td>
<td>Scripps Institution of Oceanography</td>
<td>La Jolla, CA</td>
<td></td>
</tr>
</tbody>
</table>
75. Anne Simonis
Scripps Institution of Oceanography
University of California
La Jolla, CA