Long-Term Health Effects of Embedded Depleted Uranium

John F. Kalinich, Ph.D.

Program Advisor
Internal Contamination and Metal Toxicity Program
Armed Forces Radiobiology Research Institute
Uniformed Services University

kalinich@afrrri.usuhs.mil
1. REPORT DATE
NOV 2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Long-Term Health Effects of Embedded Depleted Uranium

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Uniformed Services University, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD, 20889-5603

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the Depleted Uranium Symposium, held November 4, 2010, at the Armed Forces Radiobiology Research Institute

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
22

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
Disclaimer

The views expressed in this presentation are those of the author and do not reflect the official policy or position of the Armed Forces Radiobiology Research Institute, the Uniformed Services University, the Department of Defense, or the United States Government.
The Embedded Pellet Rat Model

X-ray of pellets implanted in gastrocnemius muscle
Experimental Approach

• Two-year longevity study to determine whether intramuscularly implanted DU or tungsten alloy pellets are carcinogenic.

• Six treatment groups of Fisher 344 rats
 - Two groups with 4 or 20 DU pellets
 - Two groups with 4 or 20 tungsten alloy pellets (91% W, 6% Ni, 3% Co)
 - One nickel group (positive control)
 - One tantalum group (negative control)

• One set of pellet-implanted rats for duration of study. Second set includes rats euthanized at selected times after pellet implantation to provide tissues for histopathology, assessment for metal content and immunotoxicity testing.

• USAMRMC Award DAMD17-01-1-0821
Body Weight Gain After Pellet Implantation

Body Weight Gain After Pellet Implantation versus Time Post-Implantation (weeks). The graph shows the body weight (in grams) over time for different groups, labeled as NS, TC, DL, and DH. The y-axis represents body weight in grams, ranging from 0 to 600, while the x-axis represents time post-implantation in weeks, ranging from 0 to 98.
Survival After Pellet Implantation

Percent Survival vs. Time Post-Implantation (weeks)

Lines represent different groups:
- NS
- TC
- DL
- DH

Survival rates decrease over time, with some groups showing a steeper decline than others.
DU pellet implants: new and 12 weeks
Spleen Uranium Levels

- **Concentration (ng/gm tissue)**

- **Implantation Group**
 - NS
 - TC
 - DL
 - DH

- **Legend**
 - 1 Month
 - 3 Month
 - 6 Month
 - 12 Month
 - 18 Month

The graph shows the concentration of uranium in spleen tissue across different implantation groups and time periods.
Fibrotic Capsule from DU Implantation Site (13 weeks)
DU Implantation Site – 13 weeks
Popliteal Lymph Node Uranium Levels

Implantation Groups

Concentration (ng/gm tissue)

DL

DH

1M
3M
6M
12M
18M
<table>
<thead>
<tr>
<th>Group</th>
<th>6 Month (n = 20)</th>
<th>12 Month (n = 20)</th>
<th>18 Month (n = 10)</th>
<th>24 Month (n = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-surgical</td>
<td>None</td>
<td>1-abdominal</td>
<td>8-testicle</td>
<td>7-testicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-abdominal</td>
</tr>
<tr>
<td>Tantalum</td>
<td>2-abdominal</td>
<td>None</td>
<td>8-testicle</td>
<td>9-testicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-abdominal</td>
<td>5-abdominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-muscle (leg)</td>
</tr>
<tr>
<td>DU Low Dose</td>
<td>None</td>
<td>2-abdominal</td>
<td>8-testicle</td>
<td>10-testicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-abdominal</td>
<td>1-abdominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-adrenal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-kidney</td>
</tr>
<tr>
<td>DU High Dose</td>
<td>None</td>
<td>2-abdominal</td>
<td>6-testicle</td>
<td>9-testicle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-lung</td>
<td>2-abdominal</td>
<td>2-lung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8-kidney</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-muscle (leg)</td>
</tr>
</tbody>
</table>
Renal Tubule Carcinoma – High-Dose DU (104 weeks)
Renal Tubule Carcinoma – High-Dose DU (104 weeks)
Urine Uranium Levels

Concentration (ng/mg creatinine)

- DL
- DH

Legend:
- 1 M
- 3 M
- 6 M
- 12 M
- 18 M
- 24 M
Kidney Uranium Levels

U Concentration (ng/gm tissue)

- **DL**: 1M, 3M, 6M, 12M, 18M, 24M
- **DH**: 1M, 3M, 6M, 12M, 18M, 24M
Uranium Levels in Rats with and without Renal Tumors

Kidney Uranium Levels (ng U/gm tissue) vs. Urine Uranium Levels (ug/gm creatinine)

- **Tumor**
- **Non-Tumor**
Summary

• DU-implanted rats did not exhibit tumors at the pellet implantation sites.

• High-dose DU rats, in the 24 month group, had an increased incidence of renal neoplasias.

• Urine uranium levels in DU-implanted rats increased over time in a dose-dependent manner.

• Uranium levels in the kidney also increased over time, reaching 3 µg/g tissue by 18 months in the high-dose DU group.
Current Work

• Continue histopathology assessment of renal carcinomas

Future Directions

• Identify early serum or urinary biomarkers of DU-induced neoplastic renal changes

• Investigate molecular mechanisms associated with DU-induced renal effects

• Tier-testing approach for assessing potential health effects of embedded metal fragments
The “Team”

Christy Emond
Vernieda Vergara

Histopathology

Steven Mog, DVM (U.S. Army, retired) – FDA
Eric Lombardini, MAJ, VMD
QUESTIONS

???