QUALIFICATION TESTING OF THE SMARTVAULT HOUSEHOLD GOODS SHIPPING CONTAINER

403 SCMS/GUEB
AIR FORCE PACKAGING TECHNOLOGY & ENGINEERING FACILITY
WRIGHT PATTERSON AFB, OH 45433-5540
6 January 2011
1. REPORT DATE
06 JAN 2011

2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
Qualification Testing Of The SmartVault Household Goods Shipping Container

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Packaging Technology & Engineering Facility, Wright-Patterson AFB, OH, 45433

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES
 44

19a. NAME OF RESPONSIBLE PERSON
THIS PAGE INTENTIONALLY LEFT BLANK
NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incurs no responsibility whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. This report is not to be used in whole or in part for advertising or sales purposes.

AFPTEF PROJECT NO. 10-P-105
TITLE: Qualification Testing of the SmartVault Household Goods Shipping Container

ABSTRACT

The Air Force Packaging Technology Engineering Facility (AFPTEF) was tasked to perform qualification testing of the SmartVault Container, manufactured by Smart Move Transportation, LLC, for the U.S. Army Surface Deployment and Distribution Command (SDDC) approval for use as a military household goods container. This container was tested by AFPTEF in 2008 and did not meet test requirements, chiefly due to a lack of water-tightness. However, Smart Move has since developed a new sealing procedure for the container and requested that the container be re-tested.

Tests were performed in accordance with SDDC Pamphlet No. 55-12, ASTM D4169, Distribution Cycle 18 and MIL-STD-810G. Although the SmartVault container’s latches had a tendency to slip out of place, the door remained closed during testing and otherwise successfully met all test requirements. This report will be furnished to the SDDC and Smart Move for their use in determining approval of the SmartVault container for transportation of household goods.

Total man-hours: 185

TEST ENGINEERS:
Susan Evans
Mechanical Engineer
AFPTEF

Michael Harff
Mechanical Engineer
AFPTEF

APPROVED BY:
Robbin Miller
Chief, Air Force
Packaging Technology
Engineering Facility

PUBLICATION DATE:
Jan 6, 2011
TABLE OF CONTENTS

ABSTRACT.. i

TABLE OF CONTENTS.. ii

INTRODUCTION .. 1

- BACKGROUND ... 1
- REQUIREMENTS ... 1
- CONTAINER DESIGN .. 1

QUALIFICATION TESTING.. 2

- TEST SAMPLE .. 2
- TEST LOAD .. 3
- TEST PLAN .. 3
- ITEM INSTRUMENTATION .. 3
- TEST SEQUENCES .. 4
- TEST CONCLUSIONS ... 7

CONCLUSIONS & RECOMMENDATIONS.. 7

APPENDICES

APPENDIX 1: Test Plan... 9

APPENDIX 2: Container and Testing Photographs... 15

APPENDIX 3: Test Instrumentation ... 35

APPENDIX 4: Distribution List ... 37

APPENDIX 5: Report Documentation .. 39
INTRODUCTION

BACKGROUND – In 2008, AFPTEF performed qualification testing of the SmartVault container, designed by Smart Move Transportation, LLC, in accordance with the requirements of the U.S. Army Surface Deployment and Distribution Command (SDDC), for approval as a household goods (HHG) shipping container. The SDDC requires all HHG containers to be tested, used, and approved in accordance with SDDC Pamphlet No. 55-12. The SmartVault container failed to meet requirements in 2008 chiefly due to a lack of water-tightness; this was the result of inadequate panel seam sealing and loosening of the wall/base interface during testing.

In 2010, AFPTEF was requested to re-test the SmartVault container as Smart Move believed they had corrected the previous design and construction deficiencies. As a plastic container used to transport military HHG, the SmartVault would be virtually unique as a plastic container, since HHG containers are generally made from wood or fiberboard.

REQUIREMENTS – SDDC Pamphlet 55-12, Transportation and Travel Commercial Containers for Department of Defense Household Goods Shipments, defines container performance criteria (specific ASTM D4169, DC-18, Assurance Level II and MIL-STD-810G tests, test temperatures/relative humidities(RH)), carrier/container manufacturer and personal property shipping offices responsibilities, criteria for the use of containers (markings, sealing and reinforcing) and container inspection, and lists SDDC approved containers. The required ASTM D4169, DC-18 and MIL-STD-810G tests, at temperatures and RH required for plastic containers, are as follows:

- Rain test, MIL-STD-810G, Procedure II (ambient temperature)
- Forklift truck transport test (ambient temperature)
- Rotational cornerwise and edgewise (ambient temperature)
- Warehouse stack test (+125°F/95% RH)
- Repeat Forklift and Rotational drops at (+125°F/95% RH)
- Loose-load vibration test (ambient temperature)
- Repeat Forklift and Rotational drops (-30°F)
- Repeat Rain test, MIL-STD-810G, Procedure II (ambient temperature)

(The Tip Test was not performed by determination of SDDC as unnecessary for this container.)

CONTAINER DESIGN – The SmartVault container (Appendix 2, Figures 1 - 7) consists of an aluminum base with 4-way forklift entry and molded high-density polyethylene (HDPE) ribbed walls and (translucent) lid which are held together with stainless steel bolts. Container walls fit into a channel on the upper edge of the pallet base and are held in place with stainless steel bolts that go through the channel and wall. The hinged door is secured using recessed plastic latches which slide through the door edge and insert into blind openings in the doorframe (Appendix 2, Figure 8); these are held in place by handle
tabs that snap into notches (Appendix 2, Figure 9) and are in the fully open position when in the second (farthest from door edge) groove. A lockable steel slide-bolt slips into place behind the center vertical latch (latch 4, Appendix 2, Figure 2 & 9) and can be padlocked to prevent casual pilferage. There is an additional hole in the door edge which corresponds to a hole in the doorframe, and can be used as a secondary locking location.

This container is intended to be watertight, but not airtight. RTV-sealant was applied to component interfaces and seams before assembly to prevent water entry, and non-continuous adhesive-backed gaskets of various types were applied around the doorway (Appendix 2, Figures 10 - 13). Two black, and one white, foam gasket strips extend across the front face and bottom edge, respectively, of the top doorjamb. One white, and one black, foam gasket strips extend down the front face and inside edge, respectively, of the hinged side door jamb. Two white, and one white, foam gasket strips extend down the front face and inside edge, respectively, of the latched side doorjamb. One white foam gasket strip extends across the front face and bottom edge of the bottom doorsill.

Stainless steel tubes (Appendix 2, Figures 14 & 15) set into the inner ribs of the side walls provide interior strapping tie-down locations. These tubes are too close to the wall and ribbing to allow use of the larger tie-down straps commonly used in the military (Appendix 2, Figures 36 & 37), and require use of smaller commercial-off-the-shelf tie-down straps (provided by Smart Move).

The container tare weight is 929 pounds. The gross weight as tested is 2995 lb, with a test load weight of 2066 lb. External dimensions are 90 in. (length) x 76 in. (width) x 88 in. (height); internal dimensions are 83 in. x 70 in. x 78 in. The door opening measures 40 in. (width) x 71.5 in. The aluminum pallet base is 8 inches high at the edges, and 7 inches high (inner floor surface). The forklift openings on the narrower ends are approximately 18 inches wide, 3 inches high and 18 inches apart. Forklift openings on the longer sides are approximately 21.75 inches wide, 3 inches high and 12 inches apart. The bottom edges of all forklift openings are beveled (Appendix 2, Figure 16).

<table>
<thead>
<tr>
<th>SMARTVAULT CONTAINER FEATURES</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forkliftable</td>
<td>Yes</td>
</tr>
<tr>
<td>Door Latches</td>
<td>7</td>
</tr>
<tr>
<td>Lockable Slide-bolt</td>
<td>1</td>
</tr>
<tr>
<td>Additional Locking Location</td>
<td>1</td>
</tr>
<tr>
<td>Lift Rings</td>
<td>None</td>
</tr>
<tr>
<td>Base Tie-down Rings</td>
<td>None</td>
</tr>
<tr>
<td>Internal Tie-down Points</td>
<td>Yes</td>
</tr>
<tr>
<td>Stacking Capability</td>
<td>Yes</td>
</tr>
</tbody>
</table>

QUALIFICATION TESTING

TEST SAMPLE – Smart Move provided one complete SmartVault container described above and one aluminum SmartVault container base to AFPTEF for testing. Loading
instructions are provided with each SmartVault as permanent adhesive labels on an inner wall. SmartVaults are provided completely assembled.

Each face of the container was uniquely identified for testing identification as shown below.

<table>
<thead>
<tr>
<th>DESIGNATED SIDE</th>
<th>CONTAINER FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>Top</td>
</tr>
<tr>
<td>Forward</td>
<td>Door Opening</td>
</tr>
<tr>
<td>Aft</td>
<td>End Opposite Door</td>
</tr>
<tr>
<td>Right</td>
<td>Right Side from Aft</td>
</tr>
<tr>
<td>Left</td>
<td>Left Side from Aft</td>
</tr>
<tr>
<td>Bottom</td>
<td>Base Bottom</td>
</tr>
</tbody>
</table>

In addition, the seven latches were numbered, in counter-clockwise order, starting with the upper hinge-side corner of the door as latch 1 (Appendix 2, Figure 2).

TEST LOAD – The test load consisted primarily of iron weights and foam dunnage in closed wood boxes, with an average weight per box of 245 lb. This load was evenly distributed over the container floor with six boxes placed along the container walls and held in place with supplied cargo straps that were hooked to the internal tiedowns; a seventh box was placed in the center of the container floor and wedged in place with wood bracing (Appendix 2, Figures 17 -19). The center of gravity for this test load was approximately 1.5 feet off the floor of the container (this is lower than required by SDDC Pam. 55-12, but was approved by SDDC for this test). The test load weight was 2066 pounds, and the tested gross container weight was 2995 pounds.

TEST PLAN – The test plan primary references were SDDC Pamphlet 55-12 and ASTM D 4169, Assurance Level II (Appendix 1). The methods specified in the test plan constituted the procedure for performing the container testing. The performance criteria for evaluation of container acceptability were specified as no structural damage, deformation or degradation of the container or components, or movement of the components, that would permit spillage of or damage to contents, prevent installation of components, reduce container strength or cause stacking instability, permit water entry, adversely affect safety during transport or storage, or otherwise interfere with forklifting or container use. Test temperatures and relative humidity are those specified in SDDC Pam. 55-12 for plastic containers. These tests are commonly applied to shipping containers used to transport HHG in the military distribution environment. The Tip Test was not performed by determination of SDDC as unnecessary for this container. All tests were performed at AFPTEF, Building 70, Area A, Wright-Patterson AFB.

ITEM INSTRUMENTATION – No data recording instrumentation was used in the testing below. See Appendix 3 for other test instrumentation information.
TEST SEQUENCES – Note: All test sequences were performed on one container with test load (above) except as noted in the test procedure.

TEST SEQUENCE 1 – Rain, Ambient Temperature
Procedure – The empty container was used for this test to permit complete inspection and observation of all interior surfaces and components. In accordance with MIL-STD-810G, 506.5, Procedure II (modified as described), the container was placed on a level surface and a large-droplet spray pattern of water (municipal water pressure 40 psig & ambient temperature) was applied to all container surfaces, using only one nozzle. Water was applied from a distance of 3 ft to 4 ft. The total test period was reduced to 45 minutes with the hose spray applied to each side for approximately 10 minutes, and focused primarily on seams and the edges of openings (Appendix 2, Figure 20). The interior was then examined for water incursions.

Results – At the end of the test period, no water was found in the container. There was no evidence of leakage past the door gaskets, nor any droplets at any of the wall/roof, wall/wall or wall/base interfaces.

TEST SEQUENCE 2 – Forklift Truck Transport Test, Ambient Temperature
Procedure: The container was picked up by the tine openings on the aft side and driven over the test course 1 round trip (forward and backward) (Appendix 2, Figure 21). The container was placed on the ground, picked up on an adjacent side, and again driven over the test course 1 round trip.

Results: There was no instability, weakening of, or damage to any component of the container. The container met test requirements.

TEST SEQUENCE 3 – Rotational Drops, Ambient Temperature
Procedure – An Assurance Level II drop height of 9 inches was used to perform four corner and four edge drops of the container onto a smooth concrete surface (Appendix 2, Figure 22). The container was visually inspected for damage.

Results – Upon conclusion of testing, latches 2, 3 and 4 had partially released, coming out of the first locking groove (Appendix 2, Figures 29 & 30). These latches began their releases throughout the drops, and were not put back into place during testing. The latches otherwise remained in place, and the edges and corners of the door remained closed. There was no other movement or shifting of container components, and no instability, weakening of, or damage to any component of the container. Other than the described movement of the three latches, the container met test requirements.

TEST SEQUENCE 4 – Warehouse Stacking, +125°F & 95 % Relative Humidity
Procedure – A 7377 lb stack test weight, consisting of one identical aluminum container pallet base with steel and iron weights, was placed on top of the container. The container, with the test load, was placed in an environmental
chamber for 24 hours at the above temperature and humidity (Appendix 2, Figure 23). At the end of the test period, the weight was removed from the container and the container was visually inspected.

Results – There was no damage or deformation of the container. The container met the test requirements.

TEST SEQUENCE 5 – Forklift Truck Transport Test, +125ºF & 95 % Relative Humidity

Procedure – The container was conditioned for 24 hours in an environmental chamber at the above temperature and humidity. At the end of this period, the container was removed from the chamber by the tine openings on the forward (door) side and Test Sequence 2 was repeated; the container was picked up on the left side for the second round trip over the test course (Appendix 2, Figure 24).

Results – There was no instability, weakening of, or damage to any component of the container. The container met test requirements.

TEST SEQUENCE 6 – Rotational Drops, +125ºF & 95 % Relative Humidity

Procedure – The container was conditioned for 24 hours in an environmental chamber at the above temperature and humidity. At the end of this period, Test Sequence 3 was repeated (Appendix 2, Figure 25). The container was visually inspected for damage.

Results – Upon conclusion of testing, latch 3 had partially released, coming out of the first locking groove; latches 1 & 2 had completely released (Appendix 2, Figures 31 & 32). These latches began their releases throughout the drops, and were not put back into place during testing. The latches otherwise remained in place, and the edges and corners of the door remained closed. There was no other movement or shifting of container components, and no instability, weakening of, or damage to any component of the container. Other than the described movement of the three latches, the container met test requirements.

TEST SEQUENCE 7 – Loose Load Vibration Test, Repetitive Shock

Procedure – A sheet of 3/4-inch plywood was bolted to the top of the vibration table, and the container was placed on the plywood. Restraints were used to prevent the container from sliding off the table. The container was allowed approximately 1/2-inch unrestricted movement in the horizontal direction from the centered position on the table (Appendix 2, Figure 26).

The table frequency was increased from 3.5 Hz until the container left the table surface (approximately 3.65 Hz). At one-inch double amplitude, a 1/16-inch-thick flat metal feeler could be slid freely between the tabletop and the container under all points of the container. Repetitive shock testing was conducted for 2 hours at ambient temperature.
Results - The loaded container was vibrated at 3.65 Hz for 2 hours. At the end of testing there was no visible damage to the container and all components had remained in place. The container met the test requirements.

TEST SEQUENCE 8 – Forklift Truck Transport Test, -30°F
Procedure: The container was conditioned for 24 hours in an environmental chamber at the above temperature. At the end of this period, the container was removed from the chamber by the tine openings on the aft side and Test Sequence 2 was repeated; the container was picked up on the right side for the second round trip over the test course (Appendix 2, Figure 27).

Results: There was no instability, weakening of, or damage to any component of the container. The container met test requirements.

TEST SEQUENCE 9 – Rotational Drops, -30°F
Procedure – The container was conditioned for 24 hours in an environmental chamber at the above temperature. At the end of this period, Test Sequence 3 was repeated (Appendix 2, Figure 28). The container was visually inspected for damage.

Results – Upon conclusion of testing, latches 1, 6 & 7 had partially released, coming out of the first locking groove; latch 2 had completely released (Appendix 2, Figures 33 - 35). These latches began their releases throughout the drops, and were not put back into place during testing. The latches otherwise remained in place, and the edges and corners of the door remained closed. There was no other movement or shifting of container components, and no instability, weakening of, or damage to any component of the container. Other than the described movement of the three latches, the container met test requirements.

TEST SEQUENCE 10 – Rain, Ambient Temperature
Procedure – The container was emptied immediately prior to this test to permit complete inspection and observation of all interior surfaces and components during the test. Test Sequence 1 was immediately repeated and the interior was examined for water incursions during and after the test (Appendix 2, Figure 20).

Results – At the end of the test period, no water was found in the container. There was no evidence of leakage past the door gaskets, nor any droplets at any of the wall/roof, wall/wall or wall/base interfaces.

NOTE: For informational purposes only, this test was repeated 2 weeks later at 45°F ambient temperature. Although not as cold as Test Sequence 9 (-30°F), the door gasketing had again taken a set from the pressure of the door, which remained even when the door was opened and at the test’s conclusion. Prior to testing, in order to simulate the partial and full releases which resulted from the rotational drop tests, latch 1 was slipped out of the first groove and latch 2 was fully released; latch 3 was fully released and latch 4 (locking latch) was fully closed; latches 5 and 6 were fully open, and latch 7 was
slipped out of the first groove. The water spray was applied as described above to the
door edges. The door was opened and the interior examined. There was no water in the
container interior.

TEST CONCLUSIONS – There was no structural damage, deformation or degradation of
the container or components, or movement of the components, that permitted spillage of
or damage to contents, prevented installation of components or closure of latches,
reduced container strength or caused stacking instability or water entry, or would
adversely affect safety during transport or storage, or interfere with forklifting or
container use. Although slippage of various door latches occurred due to the force of
rotational impacts, the door remained closed and no water entry occurred following the
conclusion of all other testing (during Test Sequence 10, Rain). Very light condensation
(not water incursion) was observed along the roof/wall seams following Test Sequence
10, where thicker portions of the container were still colder than ambient temperatures.
Despite the gasketing holding a ‘set’ from the pressure of the door prior to the repeat of
Test Sequence 10, there was no water entry even with latches loosened or open. Other
than the described movement of the latches, the container met test requirements.

CONCLUSIONS & RECOMMENDATIONS

The SmartVault container met all functional test requirements. There are, however,
several areas of concern that should be addressed by SDDC to ensure that all Smartvaults
used for military HHG shipments perform as well as the tested container indicates they
should.

As noted above, the door latches are prone to partial and full releases during rough
handling; combined with the set that the doorway gaskets can take, this could result in
water entry around the door edges in actual use. We recommend that Smart Move
consider modifying the door latch design to reinforce each latch’s closure and prevent
inadvertent releases.

Gasket type, placement, and performance specifications must be fully documented to
ensure that they perform in a consistent manner in the military HHG shipping
environment and can be replaced with equivalent products. Gaskets, especially those
across the bottom of the door opening, are extremely vulnerable to damage from feet and
items being dragged across it; therefore, a regular inspection & replacement schedule
(which may be adjusted based on future experience) should be set to ensure that the
materials are correctly replaced as they are damaged or age.

We also suggest that SDDC obtain all technical data for sealing, assembly and
installation procedures (including sealant specifications) and any replaceable parts, to
ensure repeatable results and reliable containers for potential container users other than
Smart Move. This documentation is especially important for any containers that may end
up in the military distribution environment where they cannot be replaced or refurbished
by Smart Move.
We recommend that SDDC carefully monitor the real-life performance of the SmartVault container for at least one year to ensure that any problems with units used to transport military HHG are fully identified and addressed, and to verify that sealing and gasket materials and hardware continue to meet performance specifications.
APPENDIX 1: Test Plan
ITEM NAME:	Household Goods
CONTAINER NAME:	SMARTVAULT
PACK DESCRIPTION:	Wood & fiberboard boxes, iron weights, polyethylene foam and wood, totaling 2000 lb
CONDITIONING:	Ambient, +125ºF/95%RH, -30ºF

PASS/FAIL CRITERIA FOR ALL TESTS

There shall be no damage, deformation or degradation of the container or components that would permit spillage of or damage to contents, prevent installation of components, reduce container strength or cause stacking instability, permit water entry, adversely affect safety during transport or storage, interfere with forklifting or container use. All components shall remain in place throughout testing.

The required tests below are in accordance with (draft) SDDC Pamphlet No. 55-12, Section III.

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION or CONDITIONING</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Product examination.</td>
<td>Fully assembled container shall be weighed, measured, and all components, assembly and closure requirements examined for compliance with manufacturer instructions and documentation. Interface with tiedown straps shall be checked.</td>
<td>Ambient temp.</td>
<td>Visual Inspection (VI), tape measure; Scale</td>
</tr>
<tr>
<td>1a.</td>
<td>Test Load Description.</td>
<td>Test load consists of wood & fiberboard boxes, &/or drums, filled with iron weights, wood blocks, and foam/loosefill absorbent as needed to ensure a total load of 2000 lb. Polyethylene foam wedged between the containers & tiedown straps, or wood blocking/bracing shall be used to prevent load shifting.</td>
<td>Ambient temp.</td>
<td>Visual Inspection (VI), tape measure; Scale</td>
</tr>
</tbody>
</table>
AF PACKAGING TECHNOLOGY AND ENGINEERING FACILITY
(Container Test Plan)

<table>
<thead>
<tr>
<th>CONTAINER SIZE (L x W x D) (IN)</th>
<th>WEIGHT (LB) GROSS:</th>
<th>CUBE (CU. FT)</th>
<th>QUANTITY:</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERIOR: 83 X 70 X 78</td>
<td>ITEM: 2995</td>
<td></td>
<td>1 + 1 base</td>
<td>Nov 10</td>
</tr>
<tr>
<td>EXTERIOR: 90 X 76 X 88</td>
<td>ITEM: 929</td>
<td>Approx 348</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NAME:</th>
<th>MANUFACTURER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Goods</td>
<td>Smart Move Transportation, LLC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTAINER NAME:</th>
<th>CONTAINER COST:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMARTVAULT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PACK DESCRIPTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood & fiberboard boxes, iron weights, polyethylene foam and wood, totaling 2000 lb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITIONING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient, +125°F/95%RH, -30°F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION or CONDITIONING</th>
<th>EQUIPMENT & INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Rain.</td>
<td>Rain. MIL-STD-810G, Method 506.5, Procedure II</td>
<td>Procedure shall be modified as follows: With container empty or loaded, and on a level surface, a large-droplet spray pattern of water (municipal water pressure 40 psig & ambient temperature) shall be applied to all container surfaces, using only one nozzle. Water shall be applied from a distance of 3 ft to 4 ft. Total test period shall be reduced to 45 minutes with the hose spray applied to each side for approximately 10 minutes, and focused primarily on seams and the edges of openings. The interior shall then be examined for water incursion. Entry of more than a few drops of water shall be a test failure.</td>
<td>Ambient temp.</td>
<td>Hose, standard “municipal” water pressure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schedule A – Handling - Manual & Mechanical, Assurance Level II</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Forklift Truck Transport Test.</td>
</tr>
</tbody>
</table>

COMMENTS:

PREPARED BY: Susan J. Evans, Mechanical Engineer
APPROVED BY: Robbin L. Miller, Chief AFPTEF
<table>
<thead>
<tr>
<th>Test No.</th>
<th>Test Title and Parameters</th>
<th>Ref Std/Spec and Test Method or Procedure No's</th>
<th>Equipment & Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Rotational (cornerwise & edgewise) Drops.</td>
<td>ASTM D4169, Sched. A, para. 10.3.3(3), DC-18, ASTM D6179 Methods A&B.</td>
<td>Drops shall be performed on all edges and corners, using a 9” drop height. 6-in. and 12-in. wood edge & corner supports shall be used as needed. One drop shall be performed on each edge and corner. Support blocks, hoist, quick-release, cargo straps, tape measure.</td>
</tr>
<tr>
<td>5.</td>
<td>Stack Test.</td>
<td>ASTM D4169, Schedule B, para. 11, DC-18.</td>
<td>The container with test load shall be placed in an environmental chamber at the required conditions. An identical container base, with a minimum load of 7377 lb, shall be placed on top of the test container and left in place for 24 hours. The container shall be examined for damage at the end of 24 hours. Test Load = Container Gross Mass*[(16 feet-container height)/container height]^(Safety Factor 2) Environmental chamber, forklift, iron weights.</td>
</tr>
</tbody>
</table>

Comments:
AF PACKAGING TECHNOLOGY AND ENGINEERING FACILITY
(Container Test Plan)

CONTAINER SIZE (L x W x D) (IN)
INTERIOR: 83 X 70 X 78
EXTERIOR: 90 X 76 X 88

WEIGHT (LB)
GROSS: 2995
ITEM: 929

CUBE (CU. FT)
Approx 348

QUANTITY: 1 + 1 base
DATE: Nov 10

ITEM NAME: Household Goods
MANUFACTURER: Smart Move Transportation, LLC

PACK DESCRIPTION:
Wood & fiberboard boxes, iron weights, polyethylene foam and wood, totaling 2000 lb

CONDITIONING:
Ambient, +125ºF/95%RH, -30ºF

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION or CONDITIONING</th>
<th>EQUIPMENT & INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Forklift Truck Transport Test.</td>
<td>After conditioning at the specified temp. & humidity for 24 hours, the container with test load shall be removed from the environmental chamber and test sequence 3 repeated.</td>
<td>+125ºF & 95 % RH</td>
<td>Environmental chamber, fork-lift, boards, timer, tape measure.</td>
</tr>
<tr>
<td></td>
<td>ASTM D4169, Sched. A, para. 10.3.3(2), DC-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM D6055, Method A, 2 cycles.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Rotational (cornerwise & edgewise) Drops.</td>
<td>After conditioning at the specified temp. & humidity for 24 hours, the container with test load shall be removed from the environmental chamber and test sequence 4 repeated.</td>
<td>+125ºF & 95 % RH</td>
<td>Support blocks, hoist, quick-release, tape measure, cargo straps.</td>
</tr>
<tr>
<td></td>
<td>ASTM D4169, Sched. A, para. 10.3.3(3), DC-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM D6179 Methods A & B.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schedule F – Loose Load Vibration, Assurance Level II

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION or CONDITIONING</th>
<th>EQUIPMENT & INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Vehicle Vibration.</td>
<td>Container with test load shall be tested as described with a dwell time of 2 hours, in one position.</td>
<td>Ambient temp.; upright shipping position.</td>
<td>Vibration table, controller.</td>
</tr>
<tr>
<td></td>
<td>ASTM D4169, Sched. F, para. 13.3, DC-18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTs:

PREPARED BY:
Susan J. Evans, Mechanical Engineer
APPROVED BY:
Robbin L. Miller, Chief AFPTEF

PAGE 4 OF 5
AF Packaging Technology and Engineering Facility

Container Test Plan

| Container Size (L x W x D) (IN) | Interior: 83 x 70 x 78 | Exterior: 90 x 76 x 88 | Gross Weight (LB): 2995 | Item: 929 | Cube (CU. FT): Approx 348 | Quantity: 1 + 1 base | Date: Nov 10 |

Item Name: Household Goods

Manufacturer: Smart Move Transportation, LLC

Pack Description:
Wood & fiberboard boxes, iron weights, polyethylene foam and wood, totaling 2000 lb

Conditioning:
Ambient, +125°F/95%RH, -30°F

Test Schedule A – Handling - Manual & Mechanical, Low Temperature, Assurance Level II

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Reference Standard and Test Method or Procedure No’s</th>
<th>Test Title and Parameters</th>
<th>Container Orientation or Conditioning</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Forklift Truck Transport Test.</td>
<td>Condition at the specified temperature for 24 hours (min.), the container with test load shall be removed from the environmental chamber and test sequence 3 repeated.</td>
<td>-30°F</td>
<td>Environmental chamber, forklift, boards, timer, tape measure.</td>
</tr>
<tr>
<td></td>
<td>ASTM D4169, Sched. A, para. 10.3.3(3), DC-18,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM D6179, Methods A & B.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Rotational (cornerwise & edgewise) Drops.</td>
<td>After conditioning at the specified temperature for 24 hours, the container with test load shall be removed from the environmental chamber and test sequence 4 repeated.</td>
<td>-30°F</td>
<td>Support blocks, hoist, quick-release, tape measure, cargo straps.</td>
</tr>
<tr>
<td></td>
<td>ASTM D4169, Sched. A, para. 10.3.3(2), DC-18,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM D6055, Method A, 2 cycles.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rain Test, Low Temperature, Assurance Level II

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Reference Standard and Test Method or Procedure No’s</th>
<th>Test Title and Parameters</th>
<th>Container Orientation or Conditioning</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Rain.</td>
<td>Immediately following Test No. 10, the container with test load shall be placed on a level surface (and, if possible, in a chamber cooled to -30°F), and test sequence 2 repeated.</td>
<td>-30°F</td>
<td>Hose, standard “municipal” water pressure.</td>
</tr>
<tr>
<td></td>
<td>MIL-STD-810G, Method 506.5, Procedure II.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Prepared By: Susan J. Evans, Mechanical Engineer
Approved By: Robbin L. Miller, Chief AFPTEF
APPENDIX 2: Container and Testing Photographs
Figure 1. SmartVault container – forward view.

Figure 2. SmartVault container – forward view with counterclockwise door latch numbering system.
Figure 3. Container interior, showing molded walls and aluminum floor.

Figure 4. Interior view of container roof.
Figure 5. Wall/base interface, near a corner.

Figure 6. Doorway – hinge side.
Figure 7. Doorway – latching side; note blind openings for latch insertion.

Figure 8. Blind openings for latch insertion; hole above for second lock.
Figure 9. Latch 4 with lockable slide-bolt; note hole above latch for 2nd lock or seal.

Figure 10. Upper doorway gaskets; note blind openings for latch insertion.
Figure 11. Hinge side door gaskets. Note overlap of upper doorway gaskets in corner; compression set & grooving of gaskets from door pressure is visible.

Figure 12. Latching side door gaskets, bottom corner.
Figure 13. Doorsill gaskets, hinge corner. Note slight damage to horizontal gasket.

Figure 14. Internal tiedown point.
Figure 15. Internal tiedown points with Smart Move-provided cargo straps.

Figure 16. Forklift openings.
Figure 17. Test load arrangement, right side.

Figure 18. Test load arrangement, left side.
Figure 19. Test load arrangement, forward view.

Figure 20. Rain test.
Figure 21. Forklift transport test, ambient.

Figure 22. Rotational cornerwise drop, ambient.
Figure 23. Stack test, +125°F & 95% RH.

Figure 24. Forklift transport test, +125°F & 95% RH.
Figure 25. Rotational edgewise drop test, +125°F & 95% RH.

Figure 26. Vibration test, ambient.
Figure 27. Forklift transport test, -30°F.

Figure 28. Rotational cornerwise drop test, -30°F.
Figure 29. Slippage of (locking) latch 4 due to impacts from ambient rotational drops.

Figure 30. Typical slippage of latches along upper door edge due to impacts from ambient rotational drops. Note upper door edge remains closed.
Figure 31. Slippage of latches 1 & 2 due to impacts from high temperature rotational drops.

Figure 32. Slippage of latch 3 due to impacts from high temperature rotational drops.
Figure 33. Slippage of latch 2 due to impacts from low temperature rotational drops.

Figure 34. Slippage of latch 6 due to impacts from low temperature rotational drops.
Figure 35. Slippage of latch 7 due to impacts from low temperature rotational drops.

Figure 36. Internal tie-down point and standard tie-down strap hook.
Figure 37. Internal tie-down point and standard tie-down strap hook.
APPENDIX 3: Test Instrumentation
VIBRATION TEST EQUIPMENT - Test sequence 7

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SN</th>
<th>CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servohydraulic Vibration Machine</td>
<td>Team Corp.</td>
<td>Special</td>
<td>1988</td>
<td>N/A</td>
</tr>
<tr>
<td>Feedback Hardware Controller</td>
<td>Vibration Research</td>
<td>VR8500-2 Vibration Controller</td>
<td>1FC3B4</td>
<td>Sep 10</td>
</tr>
<tr>
<td>Feedback Software Controller</td>
<td>Vibration Research</td>
<td>Version 8.0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Table Feedback Accelerometer</td>
<td>PCB</td>
<td>T352M193</td>
<td>87131</td>
<td>Apr 10</td>
</tr>
</tbody>
</table>
APPENDIX 4: Distribution List
DISTRIBUTION LIST

DTIC/O
DEFENSE TECHNICAL INFORMATION CENTER
FORT BELVOIR VA 22060-6218

SDDCTEA SDTE-DPE
ATTN MICHAEL S BARTOSIAK
709 WARD DRIVE BLDG 1990
SCOTT AFB IL 62225

SMART MOVE TRANSPORTATION L.L.C.
ATTN STEVE HERMANN
P. O. BOX 99
EVANSTON, IN 47701

403 SCMS/CL
5215 THURLOW ST, STE 4
BLDG 70C
WRIGHT-PATTERSON AFB OH 45433-5547

418 SCMS/GULAAA
ATTN THELMA LOOCK
7973 UTILITY DR
BLDG 1135
HILL AFB UT 84056

420 SCMS/GUMAA
ATTN CHAD TROTTER
7701 ARNOLD ST
BLDG 1, RM 112
TINKER AFB OK 73145

406 SCMS/GUMA
ATTN SHEILA MOORE
375 PERRY ST
BLDG 255
ROBINS AFB GA 31098
APPENDIX 5: Report Documentation
REPORT DOCUMENTATION PAGE

1. REPORT DATE: 06-01-2011
2. REPORT TYPE: Technical Final Project Report
3. DATES COVERED: September 2010 - January 2011

4. TITLE AND SUBTITLE
Qualification Testing of the SmartVault Household Goods Shipping Container

5a. CONTRACT NUMBER:
5b. Grant Number:
5c. PROGRAM ELEMENT NUMBER:
5d. PROJECT NUMBER:
5e. TASK NUMBER:
5f. WORK UNIT NUMBER:

6. AUTHOR(S):
Evans, Susan L, Qualification Test Engineer
Everett, Michael E, Qualification Test Engineer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES):
Air Force Packaging Technology & Engineering Facility
402 MC/SCME
Wright-Patterson AFB, OH 45433-5540

8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES):
Military Surface Deployment & Distribution Command
Transportation Engineering Agency
13001 Grant Line Road
Detroit, MI 48235

9. SPONSOR/MONITOR'S ACRONYM(S):
STOC/SDC

10. SPONSOR/MONITOR'S REPORT NUMBER:

11. DISTRIBUTION/AVAILABILITY STATEMENT:

12. ABSTRACT
The Air Force Packaging Technology Engineering Facility (AFPTF) was tasked to perform qualification testing of the SmartVault Container, manufactured by SmartMove Transportation, Inc., for the U.S. Army Surface Deployment and Distribution Command (SDDC) approved for use as a military household goods container. This container was tested by AFPTF in 2006 and did not meet test requirements, chiefly due to a lack of water-tightness. However, SmartMove has since developed a new sealing procedure for the container and requested that it be retested. These tests were performed in accordance with SDDC Pernament No. 54-12, ARMY P4169, Distribution Cycle 18, and Mili. STO-D-810G. Although the SmartVault container's latches had a tendency to slip out of place, the door remained closed during testing and otherwise successfully met all test requirements. This report will be submitted to the SDDC and SmartMove for their use in determining approval of the SmartVault container for transportation of household goods.

13. SURFACE FORMS:
AFPTF, SDDC, SmartMove, SmartVault, In/Dr, &CMI, household goods, HGF, plastic container

14. SECURITY CLASSIFICATION OF:
a. REPORT: U
b. ABSTRACT: U
c. THIS PAGE: U

15. LIMITATION OF ABSTRACT: U

16. NUMBER OF PAGES: 44

17. NAME OF PERSON RESPONSIBLE FOR PREPARATION:
Evans, Susan L

18. TELEPHONE NUMBER: 957-257-7445

Standard Form 298 (Rev. 8/95)
Prescribed by ANSI Std. Z39.9