MICROSTRUCTURAL EVOLUTION DURING FRICTION STIR WELDING OF NEAR-ALPHA TITANIUM

R. W. Fonda and K. E. Knipling

Naval Research Laboratory
Code 6356, 4555 Overlook Ave., SW, Washington, DC 20375, USA

Keywords: titanium, grain structure, texture

Abstract

The microstructural evolution occurring around the tool was investigated in friction stir welds of the near-\(\alpha\) alloy, Ti-5111. Specifically, the purpose of this investigation was to determine how the material ahead of the tool was influenced by the rotating tool to produce the refined grain structure observed adjacent to the tool and in the tool wake. This involved characterizing the base plate microstructure to show the original \(\beta\) grain structure and its decomposition to form specific combinations of \(\alpha\) lath orientations. The microstructure and texture of the final refined grain structure near the tool and in the deposited weld is also discussed.

Introduction

Friction stir welding (FSW) is a solid-state joining process that was developed in the early 1990s by TWI [1]. This technique, which uses a rotating, non-consumable tool to weld the workpieces together by “stirring” together the surrounding material, was initially developed for use on aluminum alloys because of the lower temperatures and stresses required to weld those alloys and the ready availability of tool materials to perform the welding. Most of the subsequent development and commercial applications of FSW have similarly been focused on aluminum alloys. However, there is also substantial interest in developing FSW for higher strength alloys such as titanium and steels. Such applications require tools that can retain their strength at much higher temperatures and may also require welding machines that can withstand the higher loads needed for some of these alloys. Although FSW of these high strength alloys has seen much less development than FSW of aluminum alloys, FSW of many high strength alloys in titanium and steel has been demonstrated and research on the welding of these alloys is increasing [e.g., 2–14].

There has been little analysis of the microstructures and textures that are produced during FSW of titanium and steel alloys, and even less on the evolution of those microstructures and textures. This is partly due to the predominant focus of this technique on aluminum alloys, but is also due in part to the complexity that is introduced into these analyses by the allotropic phase transformations that often occurs during welding. Most titanium and steel alloys have a different crystal structure at high temperature from what is present at room temperature, and friction stir welding often induces this phase transition to occur. This can lead to complex microstructural and crystallographic changes as the weld is cooled down from the welding temperature that can be difficult to deconvolve from the evolution that occurs during the welding process.

In this study, we intend to extend some of the more recent research on the evolution and development of grain structure and crystallographic texture in aluminum alloys [15–21] to the
The microstructural evolution occurring around the tool was investigated in friction stir welds of the near-\(\alpha\) alloy, Ti-5111. Specifically, the purpose of this investigation was to determine how the material ahead of the tool was influenced by the rotating tool to produce the refined grain structure observed adjacent to the tool and in the tool wake. This involved characterizing the base plate microstructure to show the original \(b\) grain structure and its decomposition to form specific combinations of a \(l\)ath orientations. The microstructure and texture of the final refined grain structure near the tool and in the deposited weld is also discussed.
understanding of the comparable processes within the near-α titanium alloy, Ti 5111. This alloy was developed to exhibit a high toughness, good weldability, and good stress-corrosion cracking resistance, and is primarily considered for marine applications that require a superior toughness and corrosion resistance [22].

Experimental

The weld examined in this study is a bead-on-plate (no seam) weld in ½” (12.7 mm) thick 5111 titanium. The Ti plate was prepared at Timet, provided by Concurrent Technologies Corporation and then welded at the Edison Welding institute with a tungsten-based alloy tool at a welding speed of 2 inches per minute (0.85 mm/s) and 140 rpm, corresponding to a 360 µm tool advance per revolution. The tool used in this welding had a truncated conical geometry with a narrow shoulder and contained no threads, flats, or other features. The small size of the shoulder was selected to facilitate an even distribution of heating during the welding process because of the poor thermal conductivity of titanium.

The weld prepared using a stop-action technique wherein the tool was extracted from the plate immediately upon completion of the weld and the weld end was quenched with cold water. This process was intended to preserve the microstructure surrounding the welding tool as a representation of the actual microstructure present around the tool during the welding process. A plan-view cross section through the plate mid-thickness at the weld end, see Figure 1, was prepared by standard metallographic techniques, with final polishing accomplished using a solution of 20% hydrogen peroxide (30%) and 80% colloidal silica solution. The resultant surface was analyzed in an FEI Nova 200 NanoLab dual column field-emission gun scanning electron microscope and focused ion beam (FEGSEM/FIB) operating at 18 kV and equipped with the HKL Channel 5 system.

Results and Discussion

Base Plate Microstructure

In order to study the microstructural evolution that occurs during friction stir welding, it is essential to understand the initial microstructure of the base plate. All microstructural evolution derives from this initial microstructure and needs to be interpreted relative to that starting point.

The microstructure of the Ti-5111 alloy consists of very large prior-β grains that can reach 8 mm in diameter (see Figure 2). These prior-β grains are subdivided into regions that contain different
α lath orientations. Some of these regions are indicated by white rectangles in Figure 2. Careful examination of these regions reveals that they each contain three specific orientations of α laths that are characterized by a 60° separation between basal {0001}_α planes and a coincidence of the close-packed (1 1 -2 0)_α directions. Furthermore, a particular α lath orientation is only observed in one of these regions in each prior-β grain.

![Figure 2. Plan view EBSD map of the initial grain structure ahead of the FSW tool and equal angle pole figures from the indicated region. Tool exit hole is towards the lower left, and tool rotation is clockwise.](image)

The α laths within each prior-β grain are each related to the original β grain orientation by the Burgers orientation relationship (OR) [23], where close-packed planes \{1 1 0\}_β \parallel \{0 0 0 1\}_α and close-packed directions \langle 1 1 1 \rangle_β \parallel \langle 1 1 -2 0 \rangle_α are parallel. This is the OR most commonly observed between the α and β phases in titanium [24]. From a geometric standpoint, the Burgers OR is theoretically able to generate 12 different α variants from one parent β orientation. The three α variants observed in each region of Figure 2 are the ones that share a common \langle 1 1 -2 0 \rangle_α direction, indicating that these are strain accommodation variants that relieve the transformation strain that each variant generates perpendicular to their common \langle 1 1 -2 0 \rangle_α direction.

Initial Effects of Friction Stir Welding on the Microstructure

The microstructure evolves as it approaches the rotating tool and is exposed to the increasing thermal and deformation gradients generated by the tool. The microstructural evolution occurs across a narrow (~400 µm) transition region between the unaffected base plate and the fine, equiaxed α grains near the tool, as shown in Figure 3. The initial stages of this evolution appear as a gradual refinement of the α lath structure. During this lath refinement, new crystallographic variants of α are also introduced with different lath orientations than the original variants.
Figure 3. Plan view EBSD map of the microstructural evolution occurring through the transition region between the base plate (upper right) and the refined grain structure near the tool (lower left) and pole figures in equal angle projection showing the production of additional α variants through this transition region.

The pole figures in Figure 3 illustrate the crystallographic evolution that occurs along with this grain refinement. At the outer edge of the deformation, three additional primary orientations appear in the \{0001\}_α pole figure, and some minor orientations also begin to appear (see Figure 3, top pole figures). A gradual counter-clockwise rotation is apparent along with the α lath refinement as this material becomes influenced by the deformation field induced by the rotating tool. There is a discontinuity in the rotation at the outer edge of the banded region where the laths abruptly rotate approximately 10° and then retain the same orientation across the banded region (Figure 3, bottom pole figures). The same six crystallographic variants remain dominant throughout these grain rotation and refinement processes, with some additional variants appearing in minor amounts.

Other regions of the weld exhibit a more complete development of α variants that better illustrate the genesis of the observed α lath orientations. Pole figures from a region of highly refined α laths further towards the retreating side of the weld exit hole are shown in Figure 4. The symmetry of these pole figures illustrates a symmetry between the different α lath variants that demonstrates that these α lath orientations are all derived from the original β grain orientation. The six primary \{0001\} orientations are distributed with the angular separations of \{110\} poles in a bcc structure, indicating an adherence to the Burgers OR. A similar distribution of orientations can be discerned in Figure 3, although it is complicated by a greater orientation spread and the appearance of some additional variants. The Burgers OR also maintains a parallelism between the \(\langle 1 1 -2 0 \rangle_α\) direction and the \(\langle 1 1 1 \rangle_β\) direction, which is reflected in the three-fold symmetry evident in the \{1 2 -3 0\}_α pole figure of Figure 4, but also present in Figure 3. The four-fold symmetry of the corresponding \(\langle 1 0 0 \rangle_β\) directions is evident in the \{1 0 -1 2\}_α pole figure. Analysis of these pole figures reveals the presence of 12 predominant α variants. There are 6 orientation variants corresponding to an alignment of a \(\langle 0 0 0 1 \rangle_α\) plane with one of the 6 bcc \{1 1 0\}_β planes. Each of those plane-matching variants contains two rotational variants separated by about 10.5° to align a \(\langle 1 1 -2 0 \rangle_α\) close-packed direction with one of the two \(\langle 1 1 1 \rangle_β\) orientations in that \{1 1 0\}_β plane. Thus most of the new α lath variant generation, and likely
most of the intervariant transformation, appears to arise from a local transformation to the parent β grain structure that is enabled by the high temperatures, possibly aided by the strain, of the FSW process. The subsequent decomposition of that bcc parent structure produces α laths according to the Burgers OR. Since these transformations occur through a single β grain orientation that is the same as the orientation of the original β parent grain, it is likely that small remnants of retained β were preserved between the α laths that can serve as nuclei for the allotropic α to β transformation during welding. Otherwise, multiple β grains, each of which satisfies the Burgers OR with the α laths, would be likely to form.

Figure 4. Pole figures in equal angle projection illustrating the cubic symmetry exhibited by the hcp α crystal variants after refinement of the lath structure and production of new α lath variants.

Texture of refined α laths in the stir zone

The predominant deformation during FSW, particularly in regions close to the tool, is expected to be simple shear, as confirmed in previous FSW studies of aluminum alloys [16, 18, 20, 21, 25, 26]. Analysis of the deformation texture that occurs around the tool during friction stir welding of this near-α titanium alloy, however, is complicated by the allotropic phase transformation. The temperatures achieved during friction stir welding of titanium alloys often exceed the transus temperature, transforming the material around the tool to the high-temperature β phase. Subsequent cooling after passage of the welding tool transforms virtually all of this material back to α, preventing a direct observation of the microstructures and textures that existed around the tool during welding. Instead, it is necessary to use the characteristics of the resultant α phase to infer the microstructure and texture that existed around the tool during welding indirectly.

The texture of this Ti-5111 friction stir weld was determined at a number of locations around the tool. Two specific locations — on the retreating side of the weld and in the deposited weld nugget — are shown in Figure 5 and typify the results obtained from all the regions examined. The left-hand pole figures, Figure 5(a), have the same relative orientation with respect to the specimen (i.e., plan view with the welding direction upward). There is a strong texture in both sets of pole figures. The basal {0 0 0 1}α planes are tilted ~35° from ND in the direction away from the welding tool and the ⟨1 1 -2 0⟩α directions are aligned tangent to the tool, which is parallel to the presumed direction of maximum shear.

The pole figures can be rotated into the shear deformation frame of reference, with a horizontal shear direction (SD) and a vertical shear plane normal (SPN), as shown in Figure 5(b). The geometry of the tool can be used to determine the orientation of the SD and SPN adjacent to the tool at those locations. The SD can be assumed from the tool tangent. Aligning the pole figures with this presumed shear direction aligns the predominant ⟨1 1 -2 0⟩α direction with the
horizontal axis of the pole figure. The shear plane is parallel to the surface of the truncated conical tool, which has a taper angle of \(-27^\circ\) (see tool schematic in Figure 5). Rotating the pole figure to account for this taper aligns a \(\{0 0 0 1\}_\alpha\) orientation near the ND. Thus, the close-packed \(\{0 0 0 1\}_\alpha\) basal plane appears to be perpendicular to the shear plane and the close-packed \(<1 1 -2 0>_\alpha\) directions are parallel to the SD. The pole figures shown in Figure 5(b) reflect this local orientation of the texture.

In bcc metals, simple shear deformation produces partial fibers belonging to \(\{hkl\}\langle 111\rangle\) and \(\{110\}\langle uvw\rangle\), as established by modeling and experimental studies of deformation textures in torsion tests [e.g., 27–28]. The texture components of these ideal simple shear orientations are shown in the \(\{110\}_{bcc}\) pole figure, Figure 6(a). Figure 6(b) displays these \(\{110\}_{bcc}\) ideal shear orientations from Figure 6(a) superimposed on the \(\{0001\}_\alpha\) pole figure from the deposited weld (bottom of Figure 5(b)). This Figure reveals an extremely good agreement between the experimental \(\{0001\}_\alpha\) texture and the ideal \(\{110\}_{bcc}\) shear texture, which is expected since these close-packed planes are parallel according the Burgers OR. Figure 6 demonstrates that the observed \(\{0001\}_\alpha\) texture is inherited directly from the shear texture of the high-temperature \(\beta\) phase, and closely matches the \(D\{112\}\langle 111\rangle\) texture component.

There have been two previous FSW studies on the texture produced in titanium alloys that should be compared to these results. Reynolds et al. [8] studied friction stir welds of a \(\beta\) titanium alloy and observed excellent agreement between the observed shear texture in the weld nugget (after a rotation of the pole figures) and the shear textures of bcc tantalum reported by Rollet and Wright [29]. Mironov et al. [30] measured the stir zone texture developed in friction stir welds of an \(\alpha\)-\(\beta\) titanium alloy, Ti-6Al-4V, and found that the retained \(\beta\) phase exhibited a \(J\{TT0\}\langle T1\Sigma\rangle\) simple shear texture that presumably developed from \(\{110\}\langle 111\rangle\) slip. The authors, however, admitted that the small amount of retained \(\beta\) in that sample limited the statistics supporting this result.
Mironov et al. [31] also measured the texture developed from friction stir processing of pure iron and consistently observed, from several locations within the stir zone, a $D_2(11\bar{2})[11\bar{1}]$ simple shear texture. Moreover, this $D_2(11\bar{2})[11\bar{1}]$ texture is the one most commonly observed during equal channel angular extrusion of bcc iron [32,33]. The similar texture produced during the current examination of friction stir welding of Ti-5111, friction stir processing of pure iron, and the equal channel angular extrusion of bcc iron further supports the conclusion that the texture observed near the FSW tool and in the deposited weld is directly derived from a simple shear texture of the high-temperature β phase.

Figure 6. (a) Schematic {110} pole figure in stereographic projection showing the main simple texture component orientations and fibers associated with simple shear deformation of bcc metals (after Li et al. [31]). (b) Superposition of the simple shear texture components on the [0001] pole figure of the deposited weld (rotated into the shear reference frame) from Figure 5(b).

Conclusion

The microstructural evolution occurring during friction stir welding of a near-α titanium alloy, Ti-5111, was discussed. The microstructure transitions over ~400 μm from the unaffected base plate, which consists of course α laths within prior-β grains, to a fine equiaxed α microstructure near the tool. In the unaffected baseplate, the α laths are related to the original β grain orientation by the Burgers OR, which aligns close-packed planes $(1\ 1\ 0)_{\beta}\ || (0\ 0\ 0\ 1)_{\alpha}$ and close-packed directions $(1\ 1\ 1)_{\beta}\ || (1\ 1\ -2\ 0)_{\alpha}$. Prior-$\beta$ grains are typically subdivided into regions that each contain three α variants that share a common $(1\ 1\ -2\ 0)_{\alpha}$ direction, indicating that these are strain accommodation α variants. Closer to the tool, there is as a gradual refinement of the α laths, which also rotate slightly in response to the shear deformation generated by the tool. Additional α variants are also generated through this region that are derived from the original β grain orientation. Adjacent to the FSW tool, the high temperatures and extensive shear deformation results in refined grains of α exhibiting a $\{0001\}_{\alpha}$ basal texture closely matching the
$D_{112}[111]$ simple shear texture observed in high-temperature torsion and equal channel angular extrusion (ECAE) of bcc iron. This indicates that the observed α texture in the stir zone is inherited directly from a simple shear texture of the high-temperature β phase.

References