TARDEC’s Vehicle Electronics & Architecture Group

Christopher Ostrowski, Vehicle Electronics & Architecture AD
POC: Nikia Williams, Electrical Engineer
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
16 DEC 2010

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
TARDECs Vehicle Electronics & Architecture Group

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Christopher Ostrowski; Nikia Williams

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

8. PERFORMING ORGANIZATION REPORT NUMBER
21422

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
21422

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
5

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
VEA Vision Statement:

• *VEA will be the first choice to technology and engineering expertise for vehicle electronics integration, research and application – today and tomorrow.*

VEA Mission Statement:

• *VEA develops, integrates, and sustains the right vehicle electronics technology solutions for all manned and unmanned ground systems and ground combat systems to improve current force effectiveness and provide superior capabilities for the future force. Key vehicle electronics technology areas include power management and distribution, controls and displays, inter-vehicular data networks, computers, software, and electronics packaging. VEA will develop and evaluate existing and emerging technologies, standards, vehicle specifications, and vehicle systems.*
Key Focus Areas

• Power Architecture & Standards
• High and Low Temp Power Electronics
• Onboard Vehicle Management, Microgrid, and Hybrization
• Common and Open Vehicle Electronic Architectures & Frameworks
• Plug and Play Architectures
• Deterministic High Speed Data Bus
• Embedded Computing Resources in Electronic Components
• Advanced On-board Computing Technologies
• Condition Based Maintenance
Autonomous Platform Demonstrator (APD)

- Multiple CAN Busses & Gigabit Ethernet (GbE)
- COTS Data Radios – 802.11 Based
- Extensive COTS Components
- Max Speed - 50 mph
- Generator Output - 197 hp
- Battery Energy - 21.8 kW-hr
- Battery Max Power - 282 hp
- Power/Weight Ratio - 112 hp/ton
- Peak Torque - 41,368 ft-lb
- Vertical Obstacle - 39 in
- Trench - 39 in
- Fording - 20 in
- Gross Vehicle Weight - 9.3 ton
- Overall Length - 182 in
- Overall Width - 98 in
Vehicle Intelligence Areas of Interest

- **Vehicle Networks**: Ad-hoc, Inter-vehicular, Modular
 - Network Management: vehicles joining/leaving the group
 - System and Electrical Architectures
 - Security
 - Operating Environments

- **Wireless Technologies**
 - Sensor information sharing between vehicles and vehicle to Infrastructure
 - Digital Short Range Wireless Communications Integration
 - Wireless Security and Anonymity