Time-Evolution of Maritime Domain Awareness

Maritime Domain Awareness and Counter Piracy, 26-29 October 2009, Ottawa, Canada
Maritime Domain Awareness

- Maritime Domain Awareness (MDA) depends upon Intelligence, Surveillance, and Reconnaissance (ISR)
- MDA is generated by completing ISR tasks that characterize contacts
ISR Experiment

- ISR in Maritime context
 - Littoral waters near Tofino, BC
- Live experiment, including UAV
- July 7 to 11, 2003
Dynamical IISRA Model (DIISRAM)

- Four contact characterization states:
 - Detection: x_1
 - Length measurement: x_2
 - Classification: x_3
 - Identification: x_4

- Predict the time-evolution of $x = (x_1, x_2, x_3, x_4)$

- Nonlinear system:
 $$\frac{d}{dt}x = F(x)$$
Postulate 1

- Capability Limit \Rightarrow MDA evolves toward a steady-state
Postulate 2

- Object availability \Rightarrow MDA evolution responds to the number of objects in each contact characterization state
Postulate 3

• Task Activation \(\Rightarrow \) MDA evolution depends on the stability of precursory and/or competitive tasks
Postulate 4

• Capability overreach \Rightarrow MDA evolution can temporarily exceed its steady-state limits
Postulates 1, 2, 3
Math Summary

- To first order, rates are proportional to
 - the difference from steady-state
 - the number of targets
 - the stability of precursory or competitive processes

\[
\dot{x}_k \propto \left(a_k N - x_k\right)
\]

\[
\dot{x}_k \propto N
\]

\[
\dot{x}_k \propto \frac{x_j}{a_j N}, \quad j \neq k
\]
Capability Overreach
Math Summary

- Steady-state can be temporarily exceeded
 \[\dot{x}_k \propto (a_k N + g_k(a, x) - x_k) \]

- Excess contacts lost during subsequent processing
 \[g_k(a, x) = \sum_{j \neq k} a_{m(j,k)} \frac{a_{i(j,k)} N - x_{i(j,k)}}{a_{i(j,k)} N - a_{n(j,k)}} \]
Best-Fit Solution

• Simple

• Text-book methods
 – Runge-Kutta solver
 – Downhill simplex search (Nelder & Mead)
 – Least squares

• Constraints: non-negative contact counts, not more than the number detected

• Penalty-function: unconstrained non-linear optimization
Best-Fit Solution
Math Summary

- Textbook Methods: Downhill Simplex Search & Least Squares

\[\chi^2 = \sum_{k=1}^{N_D} \left[\frac{F(a, x(t_k)) \cdot u_k - y_k}{\sigma_k} \right]^2 \]

- Numerical integration subject to constraints on characterization-state counts

\[0 \leq x_k \leq x_1 \]

- Penalty-function checks constraints on 19 model parameters

\[P(a) = \begin{cases}
0, & a \in \Omega \\
\text{otherwise}, & P_{\text{max}}
\end{cases} \]
A Tale of Two Pictures

- Tofino Littoral Picture (TLP)
 - Tactical-level
 - Located at Tofino airport (UAV’s base)
 - Closest node to airborne sensors

- Experimental Littoral Picture (XLP)
 - Operational-level
 - Located at Canadian Forces Base Esquimalt
 - Furthest node from airborne sensors
Case 1: Capability Overreach

\[\nu = 32 \]
\[\chi^2 = 40.0 \]
\[Q = 15.7\% \]

\[\nu = 7 \]
\[\chi^2 = 18.5 \]
\[Q = 0.9\% \]
Case 2: Sensitive Solution

\[\nu = 2 \]
\[\chi^2 = 0.8 \]
\[Q = 66.4\% \]

\[\nu = 2 \]
\[\chi^2 = 1.0 \]
\[Q = 60.7\% \]
Case 4: Capability Under-Reach

\[\nu = 42 \]
\[\chi^2 = 58.0 \]
\[Q = 66.4\% \]

\[\nu = 15 \]
\[\chi^2 = 28.7 \]
\[Q = 1.8\% \]
Case 6: Double Overreach

\[\nu = 32 \]
\[\chi^2 = 11.5 \]
\[Q = 99.9\% \]

\[\nu = 9 \]
\[\chi^2 = 9.6 \]
\[Q = 38.1\% \]
Case 9: Large Under-Reach

\[\nu = 32 \]
\[\chi^2 = 32.6 \]
\[Q = 42.8\% \]

\[\nu = 2 \]
\[\chi^2 = 0.6 \]
\[Q = 72.4\% \]
Case 12: Inversion of Reach

\[\nu = 29 \]
\[\chi^2 = 8.12 \]
\[Q = 99.9\% \]

\[\nu = 12 \]
\[\chi^2 = 10.7 \]
\[Q = 56.1\% \]
Results Summary

Tofino Littoral Picture (TLP)

<table>
<thead>
<tr>
<th>Period</th>
<th>Data Points N_D</th>
<th>DIISRAM Parameters N_p</th>
<th>Degrees of Freedom v</th>
<th>DIISRAM Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical Numbers</td>
<td>Provisional</td>
<td>Best-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>χ^2/ν</td>
<td>$Q(\chi^2, v)$</td>
<td>χ^2/ν</td>
<td>$Q(\chi^2, v)$</td>
</tr>
<tr>
<td>1</td>
<td>52</td>
<td>20</td>
<td>32</td>
<td>1.57</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>13</td>
<td>2</td>
<td>0.64</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>15</td>
<td>5</td>
<td>6.64</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>20</td>
<td>42</td>
<td>2.35</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>20</td>
<td>6</td>
<td>3.01</td>
</tr>
<tr>
<td>6</td>
<td>52</td>
<td>20</td>
<td>32</td>
<td>0.60</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>15</td>
<td>1</td>
<td>3.25</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
<td>16</td>
<td>25</td>
<td>0.84</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
<td>16</td>
<td>32</td>
<td>1.05</td>
</tr>
<tr>
<td>10</td>
<td>48</td>
<td>10</td>
<td>39</td>
<td>1.54</td>
</tr>
<tr>
<td>11</td>
<td>42</td>
<td>15</td>
<td>28</td>
<td>1.88</td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>15</td>
<td>29</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Results Summary

Experimental Littoral Picture (XLP)

<table>
<thead>
<tr>
<th>Period</th>
<th>Data Points N_D</th>
<th>DIISSRAM Parameters N_p</th>
<th>Degrees of Freedom ν</th>
<th>DIISSRAM Solution</th>
<th>Provisional</th>
<th>Best-Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reduced Chi-Squared χ^2</td>
<td>Confidence Level $Q(\chi^2, \nu)$</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>14</td>
<td>7</td>
<td></td>
<td>2.81</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>12</td>
<td>2</td>
<td></td>
<td>0.93</td>
<td>39.6</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>12</td>
<td>4</td>
<td></td>
<td>0.86</td>
<td>48.7</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>20</td>
<td>15</td>
<td></td>
<td>2.92</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td></td>
<td>2.85</td>
<td>9.1</td>
</tr>
<tr>
<td>6</td>
<td>29</td>
<td>20</td>
<td>9</td>
<td></td>
<td>1.21</td>
<td>28.3</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td></td>
<td>4.70</td>
<td>0.9</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1.52</td>
<td>21.9</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>81</td>
<td>2</td>
<td></td>
<td>0.51</td>
<td>60.1</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>9</td>
<td>8</td>
<td></td>
<td>2.97</td>
<td>0.03</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>9</td>
<td>11</td>
<td></td>
<td>0.91</td>
<td>52.5</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>9</td>
<td>12</td>
<td></td>
<td>1.09</td>
<td>36.2</td>
</tr>
</tbody>
</table>
Conclusions

• Goodness-of-fit statistics indicated that the model’s solutions were acceptable in 20 out of 24 cases
 – Acceptable for 100% of TLP cases and 67% of XLP cases
 – The solution emulated the multi-state count collapse (Cases 2 and 8)
 – Capability overreach was observed, including one double overreach (TLP Case 6)
 – Capability under-reach (opposite of overreach) was discovered (Cases 4 and 9)
 – Inverted a capability under-reach in the TLP into an overreach in the XLP (Case 12)
Practical Recommendation

• Apply the model to other real configurations of ISR assets
 – Assess goodness of fit
 – Empirical parameters would enable quantitative predictions of the time-evolution of live ISR operations
 • In other words, the model would aid MDA/ISR force planning & development
Questions?