One area in which the U.S. and DoD has a growing need for talent is in computer science. These STEM professionals play an important role in technologies, systems design, and software development. The Department of Labor has projected that in ten years, the demand for these STEM professionals will be 24 percent higher than it was in 2008. At the same time, we do not have a sufficient number of students seeking degrees in these fields, especially those that are female and are U.S. citizens. This is an important issue for DoD. We must rely on U.S. citizens for our workforce. Interventions proposed include implementing high-quality computer science education more actively at the high school level.
Presentation slides from the U.S. Department of Defense Science, Technology, Engineering and Mathematics (STEM) Summit October 18, 2010

Coordinated by the DoD DDR&E STEM Development Office
703-588-1405 / STEM@osd.mil

DISTRIBUTION STATEMENT: These slides are approved for public release; distribution is unlimited
Welcome to the
DoD STEM Quarterly Meeting
18 October 2010

Computing Education

• Increase in computing needs in labs
• Foundation for other STEM disciplines
• Vital to complex engineering
• Digital learning technologies
• Changing teaching needs, methods and courses
Demographic Overview of Degrees Awarded in Computer Science

Lisa M. Frehill
Senior Analyst, Energetics Technology Center
Director of Research, Evaluation, and Policy, NACME
October 18, 2010

Data Notes

- IPEDS = Institutional Postsecondary Educational Data System
- Collected annually by National Center for Education Statistics for all Title V institutions (those that receive Federal funds - virtually all U.S. colleges and universities).
- WebCASPAR = database system maintained by the National Science Foundation - enables access to IPEDS data as well as a number of other data collections.
- Citizenship and Racial/Ethnic Categories:
  - U.S. = U.S. Citizens and Permanent Residents
  - Temp. Res. = Temporary Residents (a.k.a. “foreign students”)
  - URM = underrepresented minority, includes Black, Non-Hispanic; American Indian/Alaska Native; and Hispanic.
  - US non-URM = all other U.S. citizens and permanent residents NOT in the three URM categories. This includes Asian, White, and Other or Unknown race/ethnicity.
Trend in computer science degrees - steady increases at graduate levels but unevenness at undergraduate.

Number of Computer Sciences Degrees by Level and Year, Selected Years, 1979-2008


Bachelor's Degrees in Computer Science, 1979, 1995, 2008


Degrees in Computer Science by Level, 2008

Computer Science Bachelor's Degrees by Sex, Citizenship and Racial/Ethnic Category, 2008 (n = 38,916)

URM females: 1.1%  
US non-URM females: 3.6%  
Temp. res. females: 5.0%  
URM males: 11.6%  
US non-URM males: 13.4%  
Temp. res. males: 65.3%


Degrees in Computer Science by Level, 2008

Computer Science Master's Degrees by Sex, Citizenship and Racial/Ethnic Category, 2008 (n = 17,148)

URM females: 3.0%  
US non-URM females: 5.6%  
Temp. res. females: 11.8%  
URM males: 31.2%  
US non-URM males: 36.5%  
Temp. res. males: 12.0%


Degrees in Computer Science by Level, 2008

**Computer Science Bachelor’s Degrees by Sex, Citizenship and Racial/Ethnic Category, 2008**

- **URM females**: 1.1%
- **US non-URM females**: 3.6%
- **Temp. res. females**: 5.0%
- **URM males**: 13.4%
- **US non-URM males**: 11.6%
- **Temp. res. males**: 65.3%

**Computer Science Master’s Degrees by Sex, Citizenship and Racial/Ethnic Category, 2008**

- **URM females**: 3.0%
- **US non-URM females**: 11.8%
- **Temp. res. females**: 36.5%
- **URM males**: 31.2%
- **US non-URM males**: 28.7%
- **Temp. res. males**: 13.1%

**Computer Science Doctoral Degrees by Sex, Citizenship and Racial/Ethnic Category, 2008**

- **URM females**: 0.8%
- **US non-URM females**: 1.4%
- **Temp. res. females**: 8.7%
- **URM males**: 8.7%
- **US non-URM males**: 1.4%
- **Temp. res. males**: 27.8%


Half of the top 10 producers of computer science doctoral degrees are in California - large variation in percent of awards to U.S. citizens and permanent residents.

**Number of Doctoral Degrees by Citizenship Status at Top 10 Producers of Computer Science Doctoral Degrees, 2008**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford Univ.</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Univ. of California-San Diego</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Nova Southeastern Univ.</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Univ. of California-Berkeley</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Univ. of California-Irvine</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>Univ. of Maryland at College Park</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Univ. of Southern California</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Univ. of Illinois at Urb.-Champ.</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>Carnegie Mellon Univ.</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Source: Energetics Technology Center analysis of IPEDS data accessed via National Science Foundation’s WebCASPAR database system, October 8, 2010.
Computer Science -
Science, Technology, 
Engineering, and Mathematics
(CS-STEM) Education

Melanie Dumas
Program Manager

August 2010

The Opportunity: Lots of Jobs

Fastest growing US occupations, 2008 and projected 2018 (Bureau of Labor Statistics)
Rank ordered by number of projected new jobs over ten years (Numbers in thousands)

<table>
<thead>
<tr>
<th>Employment</th>
<th>Major occupational group</th>
<th>Change, 2008-2018</th>
<th>%</th>
<th>Median Annual wage quartile 08</th>
<th>Most significant source of postsecondary education or training</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2008</td>
<td>2018</td>
<td>Number</td>
<td>%</td>
</tr>
<tr>
<td>Home health aides</td>
<td>Service</td>
<td>921.7</td>
<td>1382.6</td>
<td>460.9</td>
<td>50.0</td>
</tr>
<tr>
<td>Personal and home care aides</td>
<td>Service Mgmt, business</td>
<td>817.2</td>
<td>1,193.0</td>
<td>375.8</td>
<td>46</td>
</tr>
<tr>
<td>Computer software engineers, applications</td>
<td>Professional and related</td>
<td>514.8</td>
<td>689.9</td>
<td>175.1</td>
<td>34.0</td>
</tr>
<tr>
<td>Medical assistants</td>
<td>Service</td>
<td>483.6</td>
<td>647.5</td>
<td>163.9</td>
<td>33.9</td>
</tr>
<tr>
<td>Network systems, data comm. analysts</td>
<td>Professional and related</td>
<td>292</td>
<td>447.8</td>
<td>155.8</td>
<td>33.3</td>
</tr>
<tr>
<td>Computer software (SW) engineers, systems SW</td>
<td>Professional and related</td>
<td>394.8</td>
<td>515</td>
<td>120.2</td>
<td>20.4</td>
</tr>
<tr>
<td>Total</td>
<td>5432.1</td>
<td>6893.8</td>
<td>1451.7</td>
<td>22%</td>
<td>24%</td>
</tr>
<tr>
<td>CS/CE related</td>
<td>1201.6</td>
<td>1652.7</td>
<td>451.1</td>
<td>38%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Three of the top six job creating fields are CS/CE related

The highest paying jobs of the top six are all CS/CE related

31% of job creation in top 30 fields belongs to CS/CE!

...with high projected growth...

~45,000 jobs per year!
The Problem: We are losing ability to fill them.

According to NSF:
- 41,540 foreign students were enrolled in CS in 2008.
- ~50% of these were undergraduate
- ~27% of these are in a given year
- From this we estimate ~5536 foreign students are enrolled in CS annually
- Between 1/2 and 2/3 of PhD students are non-US
- Almost half of these degrees are to foreign students
- Given 14,000 newly declared majors, ~40% are foreign students

Need to turn a positive step... into a trend...

National Problem: Fewer graduates with computer science degrees cannot support our complicated software systems

Goal: Increase the number of college graduates with CS-STEM degrees

Challenging Student Activities:
- Provide compelling, age appropriate CS-STEM student activities
- Work with the students from middle school through high school for a long term, positive impact
- Couple student activities with the classroom to encourage CS-STEM elective and major selection
- Stretch to make a nationwide impact, including reaching out to disadvantaged, women, and minority under-represented groups

Robust Organizational Support:
- Provide a sustainable infrastructure to support Student Activities
- Monitor student population size to ensure long-term growth
- Recognize best practices for an adaptable organization

Status:
- 3 Performers
- Kickoff Aug 2010
### Metrics

#### Phase 1: Performance Metrics

<table>
<thead>
<tr>
<th>Continuity</th>
<th>Provide comprehensive, challenging activities from middle school through high school. Provide formal structure to encourage students to select CS-STEM academic coursework.</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Presence</td>
<td>At least one student participating from at least 15 of the United States</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Goals stated in the detailed Sustainability Plan are being met</td>
</tr>
</tbody>
</table>

#### Phase 2 and 3: Performance Metrics

<table>
<thead>
<tr>
<th>Continuity</th>
<th>Provide comprehensive, challenging activities from middle school through high school. Provide formal structure to encourage students to select CS-STEM academic coursework.</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Presence</td>
<td>Number of students enrolled in the project increases 20% from the previous year, with at least one student participating from 15 of the United States</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Goals stated in the detailed Sustainability Plan are being met. Retention: At least 80% students continue with the activities from the previous year</td>
</tr>
</tbody>
</table>
We put people in danger every day, because sometimes hands are the only tools that work -- particularly in situations that need high resilience, flexibility, and adaptability.

The ARM program will enable military applications that can revolutionize the battlefield by making robots just as dexterous, resilient, and flexible.

Autonomous manipulation with a pair of mechanized arms/hands enables effective unmanned applications

Technical Challenge

Manipulation requires many degrees of freedom (dof), and the results of contact are inherently unpredictable

Dimensionality
- Car 2-dof (steer, accelerate)
- BigDog 16-dof (4 x 4-dof legs)
- Pick Up Pen 32-dof

Contact Models
- Newton’s laws can predict the outcome of physical interactions – Seems easy
- But motions are not performed or known exactly, so geometry is uncertain
- And forces are not applied exactly, so dynamics are uncertain
- And material properties (friction, stiffness) of real objects not uniform or well-known
- Soon, error bars swamp the knowns – Not so easy anymore!

Uncertainty is the key issue
Adaptability is key
Collaboration Option: Write Software to control the ARM robot

http://www.theARMrobot.com

Outreach Track

• In addition to the core ARM research program, DARPA will sponsor an Outreach Track
  • Opportunity for unfunded, external participant involvement
  • DARPA provides:
    • Hardware
    • Interface for remote development
    • Test environment
    • Technical support
  • Targeted participants
    • Students/educational institutions
    • Average citizen/hobbiest
    • Interested corporate teams
• General participant outreach
  • Global usage of user-developed code in identical ARM test environment
  • Opportunity for general community to develop code similar to funded teams
  • Focused public events (FIRST-type competitions)
• Artistic outreach
  • Museum events for general community use (e.g. creation of “techno-art”)
  • Ability to see technology and result in a public forum
WATCH FOR MORE UPCOMING DARPA EDUCATION PROGRAMS!

Backup
Women and CS

New York Times article, Nov 2008

- **Families and Engineering**
  - “A lot of the girls who were doing computer science came from families of computer scientists and engineers.”
  - “It was in the air. There was the expectation that they could do whatever they wanted.”

- **Focus on Gaming**
  - “The girls game movement failed to dislodge the sense among both boys and girls that computers were ‘boys’ toys’ and that true girls didn’t play with computers.”
  - “Some people in the field still believed that the answer to reversing declining enrollment was building the right game”
  - World of Warcraft has 30% women (according to womengamers.com)

- **Conclusion:**
  - We don’t really understand why women aren’t pursuing CS degrees

Thousands of programs exist to improve CS education

Many programs and events are effective locally, but:
- they lack systematic linkage to other programs
- they lack a national organizational structure to scale them up

August 2010

Approved for Public Release, Distribution Unlimited – DISTAR Case 16052
## Detailed Sustainability Plan

<table>
<thead>
<tr>
<th>Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Phase 1**
- Detailed Sustainability Plan
- Midterm Review
- Final Review

**Phase 2**
- Updated Sustainability Plan
- Midterm Review
- DARPA “Building Opening Ceremony”
- End-of-Phase Report
- Final Review

**Phase 3**
- Updated Sustainability Plan
- Midterm Review
- Final Review

*Date subject to change*
Preparing US Citizens for the Deluge
Time to Get Going!

Joan Peckham
Program Director
NSF
OCI – Office of Cyberinfrastructure
Learning and Workforce Development

Computing & IT Education Needed

Technology and data touch everyone
• Era of open government
• Data exploration - 4th paradigm of science
• Jobs – Well trained workers needed
• Evidence based problem solving
• From laptop concerts, to understanding the universe, and to protecting our nation’s interests

We should not outsource our critical security needs.
So what is the problem?

Change in need for well trained workers by 2018

Software engineers, programmers,
- Computer network systems and database administrators (+30%)
- Computer software engineers and computer programmers (+21%) (with programmers projected at -3%)
- Computer systems analysts (+20%)
- Computer, information scientists, and research (+24%)
- Computer support specialists (+14%)

Compare to engineering technicians decreasing or in the single digits and with engineers doing a tad better.
- Technicians(+5%) - Exceptions are civil engineering technicians (+17) and environmental engineering technicians (+30)
- Engineers (+10%) Highest are civil (+24%), environmental (+31%), biomedical (+72%)

Overall employment expected to increase by 20% in the same period

Another Way to Look at It

Among the 20 fastest growing jobs through 2018, BLS finds:

- #2 - Network systems and data communications analysts (53% growth)
- #15- Computer software engineers, applications (34% growth)
Even the Military has Needs

As of Jan. 2009 – Of 1,226,460 Enlisted Employees
(and 14 categories – 87,604 if evenly distributed)

- Electronic and electrical repair occupations
  141,064
- Engineering, science, and technical occupations
  151,028

Only others higher were:
- Combat specialty  -193,503
- Transportation and material handling - 183,683

What are we producing? CRA Taulbee Survey 2008-2009
The Role of Informal Learning

Recent NSF Funded Study – NPR, Oct. 2010

- Stronger And Smarter: Informal Science Learning In Rural American Libraries
  - Elementary-school children perform as well in science-understanding metrics as their peers
  - Middle- and high-school students perform abysmally
  - American adults demonstrate scientific knowledge on a par or above adults in other “developed” countries
  - 30% of adult Americans have ever taken even one college-level science course
  - Knowledge is acquired via what is called informal science education or free-choice science learning

2009 Report of the National Academies on Informal Learning

- Infancy - late adulthood: Learn about the world & develop important skills for science learning.
- A great deal of science learning, often unacknowledged, takes place outside school in informal environments.
- Learning in informal environments involves developing positive science-related attitudes, emotions, and identities; learning science practices; appreciating the social and historical context of science; and cognition.
- Informal environments can be particularly important for developing and validating learners’ positive science-specific interests, skills, emotions, and identities.
How to Strengthen Informal Education With Rigor and Vigor

– Excitement, interest, and motivation to learn about phenomena in the natural and physical world.
– Generate, understand, remember, and use concepts, explanations, arguments, models and facts related to science.
– Manipulate, test, explore, predict, question, observe, and make sense of the natural and physical world.
– Reflect on science as a way of knowing
– Participate in scientific activities and learning practices with others, using scientific language and tools.
– Think about themselves as science learners and develop an identity as someone who knows about, uses, and sometimes contributes to science.

-From the 2009 National Academies report on informal learning-

Informal but Rigorous Computing & IT

How to inject the rigor?

Computational Thinking
• Core constructs of computing and computational science
• For everyone – citizen to scientist
• Fluency in the language of computing and our modern world – all disciplines
Computational Thinking
What is it? What should we know?

Citizens and Scientists alike should know ...
- Animation of algorithms/processes
- Managing consequences of scale
- Error prevention - testing, debugging, recovery, and correction
- Data collection, archival, retrieval, exploration
- Step by step, interactive problem formulation, simulation, and solving
- Collaborative and plugged-in approaches

Interactive Problem Solving
Intrepid Exploration

- Abstraction
- Breaking problems down into digestible parts
- Organized plug and play & debug
- And **Without Fear!**

Jill Denner – ETR Associates - Intrepid Exploration
(Sherry Turkle) – CT for Everyone Workshop, February 4-5, 2009, National Academies
Computational Thinking Endgame for NSF

Research
• New mental tools
• New interdisciplinary efforts
• Innovation

Education
• Prepare the next generation
  • For computing
  • For new emerging disciplines
  • Strengthen existing disciplines
  • Stronger citizens, stronger nation

Preparing Citizens for the Deluge
Time to Get Going!

THANK YOU!
Transforming HS Computing Education
Jan Cuny
National Science Foundation
Oct. 18, 2010

We have a problem in computing
Projected STEM job growth is in IT

% Freshman interest in CS

Source: HERI; Figure: NCWIT
Plummeting CS degrees

CRA Taulbee Survey, 2008-2009

Underproduction

By 2018, there will be 1.4 million computer specialist job openings.

US universities will have generated enough graduates to fill about 1/3 of these openings.

NCWIT, By the Numbers, 2009
The missing 70%

Slide: Dr. Chris Stephenson, CSTA, Data: College Board

The missing 70%

CRA Taulbee Survey, 2007/2008
How we compare

Percent Women by Field and Degree Level
2007 Degree Conferences

- Associates
- Bachelor's
- Master's
- Doctorate's

Parity Line: 50%

Biological Sciences
Computer and Information Sciences
Engineering
Mathematics
Physical Sciences
Psychology
Social Sciences

Source: Dr. Lisa Frehil, CPST

Trends in Underrepresentation

Change in Percentage of Women and URM's Obtaining Associate's, Bachelor's, Master's and Doctorate Degrees 1986 - 2005

CS & IT
Engineering
Life Sciences
Mathematics
Physical Sci
Psychology
Social Sci

Percentage

Source: National Center for Educational Statistics, Digest of Educational Statistics
Why does underrepresentation matter?

It’s a loss of

• Opportunity for individuals
• Talent to the workforce
• Innovation and creativity to the field and to our economy
ACM Programming Contest

<table>
<thead>
<tr>
<th>Place</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shanghai Jiaotong University</td>
</tr>
<tr>
<td>2</td>
<td>Moscow State University</td>
</tr>
<tr>
<td>3</td>
<td>National Taiwan University</td>
</tr>
<tr>
<td>4</td>
<td>Taras Shevchenko Kiev National University</td>
</tr>
<tr>
<td>5</td>
<td>Petrozavodsk State University</td>
</tr>
<tr>
<td>6</td>
<td>Tsinghua University</td>
</tr>
<tr>
<td>7</td>
<td>Saratov State University</td>
</tr>
<tr>
<td>8</td>
<td>University of Warsaw</td>
</tr>
<tr>
<td>9</td>
<td>St. Petersburg State University</td>
</tr>
<tr>
<td>10</td>
<td>Zhongshan (Sun Yat-sen) University</td>
</tr>
<tr>
<td>11</td>
<td>Fudan University</td>
</tr>
<tr>
<td>12</td>
<td>KTH - Royal Institute of Technology</td>
</tr>
<tr>
<td>13</td>
<td>Ural State University</td>
</tr>
</tbody>
</table>

High school is the key to fixing it
Why High School?

1. We need to do *much* better there.

The state of HS CS

- Since 2005, introductory secondary school computer science courses have decreased in number by 17%, AP CS courses by 33%
- 2/3 of states have few computer science standards for HS
- Widespread confusion about technology education, literacy and fluency, and IT & CS as academic subjects
- Few states count CS in graduation core
Why High School?

1. We need to do much better there.

2. Without the HS piece, anything we do for middle school will be lost.

3. Without the HS piece, anything we do at the college level will be insufficient.

Why focus on AP?

- Often the only CS course that carries college prep credit
- Attractive to students & schools
- 2,000 CB-audited teachers
- Single point of national leverage
Proposed AP CS Principles

- Engaging, accessible, inspiring, rigorous
- Focused on the fundamental concepts of computing (CT)
- A target for K through 9 course development and an impetus for college curriculum reform
- Available nationwide with fidelity of replication

New High School Curriculum

- Introductory course for everyone
- Proposed AP CS Principles
- AP CS Programming

ECS Team at LAUSD
AP CS Principles is a college course

2010 Pilots

– University of Washington
– UC Berkeley
– UC San Diego
– Metropolitan State College of Denver
– UNC Charlotte

Getting it taught, and taught well
CS 10K

Develop an effective new high school computing curriculum and get it taught in 10,000 schools by 10,000 well-prepared teachers by 2015.

CS 10K Project

• Curriculum development
• Teacher Preparation
  – In-service preparation
  – Pre-service preparation
  – Ongoing professional development
• Entrée into schools

Needed: Public/Private Partnerships!!
Building momentum
Bring Exciting Hands-On Learning to Your Area

It's more than just a day.
We're building a community.

National Lab Day is a nationwide initiative to build local communities of support that will foster ongoing collaborations among volunteers, students and educators. Learn more.

Contact us with your successful NLD experiences. Please also visit our NLD Success page click here.

NLD Video Contest - Extended!
National Lab Day is hosting an online video contest. We want to see your projects!
The new deadline is October 1st.
The first place winner will receive a $1,500

National Lab Day, or NLD, is a day to celebrate science and technology. It's a day to bring together communities across the country to engage in hands-on learning experiences.

Computer Science Education Week, December 5-11, 2010, recognizes that computing:
- Enriches everyone's daily lives and plays a critical role in society
- Drives innovation and economic growth
- Provides rewarding job opportunities
- Prepares students with the knowledge and skills they need for the 21st century

Why is Computer Science Education Important?
- It prepares students for critical thinking
- It is essential for success in the digital age
- Too few students are exposed to opportunities presented by computer science

Examinations, parents, policymakers, professionals and students are invited to become part of this important effort by utilizing the valuable resources on this website.

Computer Science Week is the week in which computer science is taught in schools and communities across the country. It's a week to raise awareness of computing and its role in society.

Welcome to the Companion website for the book 'The Power of Knowledge' by Nancy in Computer Science Education Week 2010

Computer Science is the key to unlocking the future. It's a field that is growing rapidly and offers many opportunities for those who are interested in learning more about it.

Computer Science Education Week is a great opportunity to learn more about the field and to see how it can be applied in everyday life.
Thanks!

http://csprinciples.org
http://csprinciples.cs.washington.edu
http://www.computingportal.org/cs10k

Jan Cuny
jcuny@nsf.gov
List of useful Website URLs – Page 1 / 2

- National Center for Women & Information Technology - http://www.ncwit.org
- Dot Diva – http://www.dotdiva.org
- http://picturemeincomputing.com
- Fostering Innovation Through Robotic Exploration – http://www.fire.cmu.edu
- Teach Ourselves - http://www.cs.arizona.edu/projects/focal/edinfo/teachourselves/

List of useful Website URLs – Page 2 / 2

- Excelencia in Education – http://www.edexcelencia.org/
- Computer Science Education Week – http://www.csedweek.org
- DARPA Autonomous Robotic Manipulation – http://theARMrobot.com
- Connecting Computing Educators - http://www.computingportal.org/cs10k