Award Number:
W81XWH-08-1-0345

TITLE:
Regulation and Action of SKP2 in Cell and Tumor Models: Mechanisms Underlying Aggressive Growth in Basel-Like Breast Cancer

PRINCIPAL INVESTIGATOR:
Katerina Fagan-Solis

CONTRACTING ORGANIZATION:
University of Massachusetts
Amherst, MA 01003-9333

REPORT DATE:
June 2010

TYPE OF REPORT:
Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

■ Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Regulation and Action of SKP2 in Cell and Tumor Models: Mechanisms Underlying Aggressive Growth in Basel-Like Breast Cancer

1. REPORT DATE
06-01-2010

2. REPORT TYPE
Annual Summary

3. DATES COVERED
(From - To)
15 May 2009 - 15 May 2010

4. TITLE AND SUBTITLE
Regulation and Action of SKP2 in Cell and Tumor Models: Mechanisms Underlying Aggressive Growth in Basel-Like Breast Cancer

5. AUTHOR(S)
Katerina Fagan-Solis
Email: kfaganso@mcb.umass.edu

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Massachusetts
Morrill 1 N427
637 North Pleasant St
Amherst, MA 01003

7. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Department of Defense Breast Cancer Research Program
Office of the Congressionally Directed Medical Research Programs
U.S. Army Medical Research and Material Command
Fort Detrick, Maryland 21702-5012

8. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

14. ABSTRACT
The objective of this research is to further our understanding of the molecular mechanisms underlying the aggressive growth of estrogen receptor (ER)-negative, basal-like breast tumors. My goal is to determine if SKP2 is a viable new therapeutic target to specifically treat patients who have tumors that are independent of ER signaling. The most significant result was the establishment of a TMX2-28 cell line that has been stably transfected with a SKP2-shRNA construct. This cell line will be instrumental in elucidating the role that SKP2 plays in breast cancer progression.

15. SUBJECT TERMS
ER-negative, Breast Cancer, SKP2

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAMRMC</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
<tr>
<td>Appendices</td>
<td>5</td>
</tr>
</tbody>
</table>
Introduction:

The objective of this research is to further our understanding of the cellular and molecular mechanisms underlying the aggressive growth of ER-negative, basal-like tumors. The goal is to identify new therapeutic targets to specifically treat patients that have tumors that are independent of ER signaling as these tumors are more often ER-negative. Past work from our lab and others has suggested that S-phase kinase-associated protein 2 (SKP2) plays an important role in breast tumorigenesis and would make a good therapeutic target. By utilizing three models (human tissue, animal models, and tissue culture) in which to characterize the role of SKP2 in breast cancer, we can obtain a better understanding of the molecular mechanisms underlying the aggressive tumor growth of basal-like breast tumors. It is anticipated that results from these studies will show that SKP2 would make a good therapeutic target for the treatment of women with basal-like tumors that are often associated with poor clinical outcome and tend to be ER-negative.

Body:

Task 1: During the second year of this three year study, I have obtained the necessary IRB approval to begin to collect archived formalin-fixed paraffin-embedded reductive mammoplast and breast carcinoma tissues from the Department of Pathology, Baystate Medical Center. These tissues will be used to create tissue microarrays to be stained for SKP2, p27, phosphor-p27, CDK2, cyclin D1, and cyclin E.

Task 2: I have successfully created a mixed population, as well as a number of single clone populations of TMX2-28 cells that has been stably transfected with the negative control SKP2-shRNA vector. Additionally, I have successfully created a mixed population of TMX2-28 cells that have been stably transfected with SKP2-shRNA vector. Single clone populations of the SKP2-shRNA transfected cell line are currently being established. Once established, alterations in cell cycle can be assayed using FACS analysis.

Task 3: To date, I have isolated protein from untransfected TMX2-28, SKP2 knocked down TMX2-28, MCF-7, and MDA-MB-231 cells. Alterations in protein expression levels are currently being determined.

Key Research Accomplishments:

Training Accomplishments:

- Continue collaborations with Dr. Christopher Otis, Director of Surgical Pathology at Baystate Medical Center; Dr. Brian Pentecost, New York Department of Health; Dr. Sallie Smith-Schneider, Pioneer Valley Life Sciences Institute; and Dr. Douglas Anderton, Associate Dean for Research Affairs, Director of Social and Demographic Research Institute
- Current and active member of AACR, AAAS, and SACNAS
- Continue to talk and meet with my mentor Dr. Kathleen Arcaro on a daily basis
- Attend weekly cancer and chemoprevention journal club, apoptosis journal club, molecular and cellular biology seminar and colloquia, animal biotechnology and biomedical science seminar

Research accomplishments:

- Obtained IRB approval from Baystate Medical Center to collect archived formalin-fixed paraffin-embedded reductive mammoplast and breast carcinoma tissues
- Transfected TMX2-28 cells with SKP2-shRNA and successfully established a stably transfected cell line
- Isolated protein from TMX2-28, SKP2 knockdown TMX2-28, MCF-7, and MDA-MB-231 cell lines
Reportable Outcomes:

As a result of my research thus far, I have established a SKP2-shRNA stably transfected TMX2-28 cell line. This work has also led to the presentation of this research at the American Association of Cancer Research Advances in Breast Cancer Research Conference.

Conclusion:

The second year of this study has led to the acquirement of IRB approval, the establishment of a cell line, and the continuation of my training through collaborations and interactions with a number of clinicians, pathologists, bench scientists and epidemiologists. In the final year of this study I expect to complete all immunohistochemical, cell line establishment, gene/protein expression (task 3), cell cycle analysis, and *in vivo* work.

References: None

Appendices: American Association of Cancer Research Advances in Breast Cancer Research Conference Poster
Introduction

Breast cancer is a heterogeneous disease that varies in its biology and response to therapy.

- Basal-like tumors are associated with:
 - A positive basal cytokeratin (CK) expression pattern (CK 5, 14 and/or 17)
 - Negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidimal growth factor receptor 2 (HER2)

- The objective of this research is to further our understanding of the cellular and molecular mechanisms underlying the aggressive growth of triple-negative basal-like tumors.

- SKP2 is associated with poor clinical outcome.

SKP2 Targets p27 for Degradation

![Figure 1](Image)

The highly proliferative and aggressive nature of ER-negative and triple-negative basal-like breast cancer is the consequence of dysregulation of the cell cycle as a result of SKP2 overexpression.

References

Funding

Department of Defense Predoctoral Traineeship Award (Drs. of Hope, Baystate Medical Center)

Knockdown of SKP2 in TMX2-28 Cells does not Result in Significant Changes in the Gene Expression of the Cell Cycle Genes Associated with SKP2

Summary

- TMX2-28 is a triple-negative breast cancer cell line that constitutively expresses a basal-like cytokeratin pattern and overexpresses SKP2.
- TMX2-28 cells also overexpress a number of genes associated with SKP2 including p27 and cyclin E.
- Knockdown of SKP2 expression by siRNA does not significantly alter gene expression of its associated genes.
- SKP2 expression was highly expressed in 46% (17 of 37) of ER-negative tumors, 24% (23 of 96) of ER-positive tumors, and 18% (9 of 50) of basal-like cancers.
- SKP2 was also highly expressed in 97% (10 of 13) of triple-negative breast cancers while only 4% (4 of 98) of non-triple-negative breast cancers had high expression of SKP2.

Future Directions

- 300 additional ER-negative and triple-negative tumor cases to examine immunohistochemically.
- Protein expression profiling of TMX2-28 cells pre- and post SKP2 knockdown.
- Cell cycle analysis of TMX2-28 cells post SKP2 knockdown.
- In vivo studies involving TMX2-28 cells where SKP2 has been stably knocked down.