Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

Overview of OSU research plan

Walter Lempert, Igor Adamovich, J. William Rich, and Jeffrey Sutton

MURI Kick-Off Meeting
November 4, 2009
Overview of OSU research plan

1. REPORT DATE
04 NOV 2009

2. REPORT TYPE

3. DATES COVERED
00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Overview of OSU research plan

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ohio State University, Nonequilibrium Thermodynamics Laboratories, Columbus, OH, 43210

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT unclassified
b. ABSTRACT unclassified
c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
29

19a. NAME OF RESPONSIBLE PERSON
Thrust 1. Experimental studies of nonequilibrium air-fuel plasma kinetics using advanced non-intrusive diagnostics

Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-dependent radical species concentration and temperature measurements in nanosecond pulse plasmas in a variety of fuel-air mixtures pressures (P=0.1 - 5 atm), and equivalence ratios (φ~0.1-3.0)

Goal: Generate an extensive set of experimental data on radical species concentrations and temperature rise; elucidate kinetic mechanisms of low-temperature plasma chemical fuel oxidation and ignition using kinetic modeling. Bridge the gap between room-temperature data (low-pressure gas discharges) and high-temperature data (shock tubes)
Test Bed #1: High-temperature, high-pressure nanosecond pulse discharge cell

High-pressure discharge cell inside a tube furnace (6 inch bore, up to $T=1200^\circ C$)
Premixed fuel-air flow (~1 m/s), preheated in the furnace, from 0.1 atm to a few atm
Repetitive nanosecond pulse discharge plasma: 20-40 kV, 5-25 nsec, 10 Hz to 100 kHz
Optical access (LIF, TALIF, CARS, CRDS) on the sides
Fuels: hydrogen, methane, ethylene, propane, pentane, methanol & ethanol vapor
Repetitive nanosecond pulse plasma for kinetic studies: Air, P=60 torr, ν=40 kHz, 40 msec burst, 1 μsec gate

- Some filamentary structure in pulses #1 and #2
- Uniform air plasma during subsequent pulses, at P=40-100 torr
Repetitive nanosecond pulse plasma for kinetic studies:
Ethylene-air, $P=40$ torr, $\varphi=1$, $\nu=40$ kHz

• Nearly uniform plasma during entire burst (except pulses #1 and #2)

• Ignition does not occur, likely due to rapid wall cooling

• Pressure is low – can this experiment be done at higher pressures?
Repetitive nanosecond pulse plasma for kinetic studies: Ethylene-air, $P=60$ torr, $\varphi=1$, $\nu=40$ kHz

- Uniform plasma during first few tens of pulses (except pulses #1 and #2)
- Well-defined filaments form in pulse #100, persist for several hundred pulses
- After ignition occurs, flame fills entire discharge volume, and plasma becomes uniform again
- Filamentation likely due to ionization / heating instability

- This is unacceptable: need to keep the plasma uniform during entire burst
- We know that preheating will improve plasma uniformity
- Sustaining plasma in a heated cell will allow measurements at higher pressures
Previous results: O atoms in air, methane-air, and ethylene-air at P=60 torr (single-pulse and burst mode, initially at T=300 K)

Objective: measure time-resolved O and H atoms in nsec pulse discharge plasmas in H$_2$-air and C$_x$H$_y$ air mixtures, at P ~ 0.1 - 1 atm, T=300-800 K

Outcome: kinetic mechanism of low-temperature plasma fuel dissociation and oxidation (specifically rates of O atom generation in the plasma and O atom reactions with fuel species)
Time-resolved species concentrations: OH (LIF with Hencken adiabatic burner calibration)

Work currently underway: OH in methane-air and ethylene-air at P=60 torr (single-pulse and burst mode, initially at T=300 K)

Objective: measure time-resolved OH in nsec pulse discharge plasmas in H₂-air and CₓHᵧ air mixtures, at P ~ 0.1 - 1 atm, T=300-800 K

Outcome: kinetic mechanism of low-temperature plasma fuel oxidation (specifically rates of H atom abstraction from fuel species)
Time-resolved species concentrations: NO
(LIF with calibration using known NO-N2 mixture)

Previous results: NO in air, methane-air and ethylene-air at P=60 torr (single-pulse, initially at T=300 K). State-of-the-art kinetic models cannot explain time-resolved data. Possible effect of N2(X,v) + O reaction.

Objective: measure time-resolved NO in nsec pulse discharge plasmas in H2-air and CxHy air mixtures, at P ~ 0.1 - 1 atm, T=300-800 K

Outcome: kinetic mechanism of low-temperature plasma fuel oxidation (specifically O2 dissociation vs. NO formation in N2* reactions)
Time-resolved, spatially resolved temperature
(purely rotational CARS)

Previous results: time-resolved temperature in air and ethylene-air at P=40 torr (burst mode, initially at T=300 K). Evidence of significant additional heat release in fuel-air, compared to air.

Objective: measure temperature in nsec pulse discharge plasmas in H_2-air and C_xH_y air mixtures, at P ~ 0.1 - 1 atm, T=300-800 K.

Outcome: kinetic mechanism of low-temperature plasma chemical energy release in exothermic fuel oxidation reactions with radicals.
Test Bed #2: Flat flame McKenna burner with nanosecond pulse discharge

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Flame

HV electrode 5-15mm ~1-5 mm

Wire mesh HVE

Burner surface

McKenna burner

Flat flame burner inside a six-arm cross vacuum chamber (8 inch bore)
Premixed fuel-air flow (~0.1-1.0 m/s) with N₂ co-flow, P=10-40 torr
Repetitive nanosecond pulse discharge plasma: 20-40 kV, 5-25 nsec, 10 Hz to 100 kHz
Optical access (LIF, TALIF, CRDS) on two perpendicular axes
Fuels: hydrogen, methane, ethylene, propane, pentane, methanol & ethanol vapor
Steady, laminar, low-pressure flat flames allow spatially-resolved measurements of temperature and species concentrations.

Minimize transport influence; isolate kinetic effects.

Can investigate full range of temperature conditions (from below 500 K to 2000 K) by adjusting measurement position (i.e. height above burner).

Typical spatial scale ~5-20 mm, spatial resolution <200 µm.

Straightforward integration of nsec discharge plasma into a low-pressure flame facility and study of plasma effects (i.e. measurements with plasma “off” and “on”).
Previous low-pressure flame results (LIF): P=10-40 torr; CH$_4$, C$_2$H$_6$, C$_3$H$_8$, C$_4$H$_{10}$; φ=0.6 -1.4

Flame temperature from rotational structure of OH A-X (1,0) band near 282 nm

Spectral features used for profiles of flame species:
- **CH** A-X (0,0) at 435 nm
- **NO** A-X (0,0) at 226 nm
Previous low-pressure flame results (LIF):

\(P = 10 - 40 \) torr; \(CH_4, C_2H_6, C_3H_8, C_4H_{10}; \varphi = 0.6 - 1.4 \)

Spatially-resolved measurements of radicals to understand high-temperature flame chemistry, help kinetic model development

Kinetic modeling: GRI-Mech 3.0

We will look at the region upstream of the flame where coupling between plasma kinetics and flame chemistry is most important
Objective: Examine coupling of plasma and combustion kinetics in a 1-D low-pressure flame. Use spatially-resolved species concentration and temperature measurements by LIF (OH, H, O, and CH) and CRDS (HO₂, HCO, CH₃) to study the effect of quasi-steady (RF) and repetitively pulsed nsec discharge plasmas on low-temperature chemistry and coupling with the flame zone.

Outcome: Kinetic mechanism of low-temperature plasma chemical fuel oxidation and energy release, and its effect on flame speed and burn rate. Specifically, boundary between “low-T” and “high-T” chemistry by measuring HO₂ radical concentration, at the conditions when O₂ is electronically excited:

\[\text{O}_2 + \text{H} \rightarrow \text{OH} + \text{O} \quad \text{(high temperatures)} \]
\[\text{O}_2 + \text{H} + \text{M} \rightarrow \text{HO}_2 + \text{M} \quad \text{(low temperatures)} \]

CRDS diagnostics will be used in both “test bed” experiments, (I) high-T, high-P nsec discharge plasma cell, and (II) low-P flame / plasma cell.
Task 8: Development and validation of a predictive kinetic model of non-equilibrium plasma fuel oxidation and ignition, using experimental results of Thrust 1

Goal: Identify key mechanisms, reaction, and rates of plasma chemical fuel oxidation processes for a wide range of fuels, pressures, temperatures, and equivalence ratios. This is absolutely essential to predictive capability of the model.
Air plasma model: equations for ground state species (**N**, **N**₂, **O**, **O**₂, **O**₃, **NO**, **NO**₂, **N**₂**O**), charged species (electrons and ions), and excited species (**N**₂(**A**^{3Σ}), **N**₂(**B**^{3Π}), **N**₂(**C**^{3Π}), **N**₂(**a**^{1Σ}), **O**₂(**a**^{1Δ}), **O**₂(**b**^{1Σ}), **O**₂(**c**^{1Σ}), **N**(2**D**), **N**(2**P**), **O**(1**D**)) produced in the plasma.

Two-term expansion Boltzmann equation for plasma electrons

Fuel-air plasma: model combined with GRI Mech 3.0 **C**_x**H**_y oxidation mechanisms, supplemented with fuel dissociation by electron impact and in reactions with electronically excited nitrogen

Peak E/N adjusted for pulse energy to be same as predicted by the nanosecond pulse discharge model

We have absolutely no reason to trust the model predictions: GRI Mech 3.0 (or any other combustion mechanism) is not designed to work at low temperatures (starting at **T**=300 K)

Confidence in the model can be provided **only by detailed kinetic measurements** such as discussed in Thrust 1 plan
Here is what we know so far: dominant radical and energy release processes in \(\text{C}_2\text{H}_4 \)-air predicted by the model

O atom generation

\[
\begin{align*}
\text{N}_2 + e^- & = \text{N}_2(\text{A}^3\Sigma) + e^- \\
\text{N}_2 + e^- & = \text{N}_2(\text{B}^3\Pi) + e^- \\
\text{N}_2 + e^- & = \text{N}_2(\text{C}^3\Pi) + e^- \\
\text{N}_2 + e^- & = \text{N}_2(\text{a}^1\Sigma) + e^- \\
\text{O}_2 + e^- & = \text{O}(^3\text{P}) + \text{O}(^3\text{P,1D}) + e^- \\
\text{N}_2(\text{C}^3\Pi) + \text{O}_2 & = \text{N}_2(\text{a}^1\Sigma) + \text{O}_2 \\
\text{N}_2(\text{a}^1\Sigma) + \text{O}_2 & = \text{N}_2(\text{B}^3\Pi) + \text{O}_2 \\
\text{N}_2(\text{B}^3\Pi) + \text{O}_2 & = \text{N}_2(\text{A}^3\Sigma) + \text{O}_2 \\
\text{N}_2(\text{A}^3\Sigma) + \text{O}_2 & = \text{N}_2 + \text{O} + \text{O}
\end{align*}
\]

Fuel dissociation

\[
\begin{align*}
\text{C}_2\text{H}_4 + e^- & = \text{products} + e^- \\
\text{N}_2(\text{A}^3\Sigma) + \text{C}_2\text{H}_4 & = \text{N}_2 + \text{C}_2\text{H}_3 + \text{H} \\
\text{N}_2(\text{B}^3\Pi) + \text{C}_2\text{H}_4 & = \text{N}_2 + \text{C}_2\text{H}_3 + \text{H} \\
\text{N}_2(\text{C}^3\Pi) + \text{C}_2\text{H}_4 & = \text{N}_2 + \text{C}_2\text{H}_3 + \text{H} \\
\text{N}_2(\text{a}^1\Sigma) + \text{C}_2\text{H}_4 & = \text{N}_2 + \text{C}_2\text{H}_3 + \text{H}
\end{align*}
\]

O atom decay

\[
\begin{align*}
\text{O} + \text{C}_2\text{H}_4 & = \text{CH}_3 + \text{HCO} \\
\text{O} + \text{C}_2\text{H}_4 & = \text{H} + \text{CH}_2\text{CHO} \\
\text{C}_2\text{H}_3 + \text{O}_2 & = \text{HCO} + \text{CH}_2\text{O} \\
\text{C}_2\text{H}_3 + \text{O}_2 & = \text{O} + \text{CH}_2\text{CHO} \\
\text{O} + \text{O}_2 + \text{M} & = \text{O}_3 + \text{M} \\
\text{O} + \text{O}_3 & = \text{O}_2 + \text{O}_2
\end{align*}
\]
Model validation summary: so far so good…

... but no surprise if the model fails at some point

Nonequilibrium Thermodynamics Laboratories

The Ohio State University

Need a lot more data from Thrust 1 for extensive model validation

Outcome: a self-consistent low-temperature fuel-air plasma chemical mechanism
Task 10: Characterization and modeling of nsec pulse discharges

Goal: Prediction of E/N and electron density in the plasma, individual pulse energy coupled to the plasma, and their scaling with pressure, temperature, pulse waveform, and mixture composition
Two-pronged approach to plasma assisted ignition modeling

Predictive modeling of energy release rate and ignition delay time in low-temperature, repetitive nanosecond pulse fuel-air plasmas requires:

- E/N in the plasma, individual pulse energy coupled to the plasma, and their scaling with pressure, temperature, pulse waveform, and mixture composition

- Air plasma and fuel-air plasma chemistry: reactions among ground state species, excited species and radicals generated in the plasma, and their effect on energy release rate

These two problems require separate analysis:

- Nsec pulse plasma / sheath models cannot incorporate detailed reactive plasma chemistry: too many species (~100) and reactions (~1,000)

- Detailed plasma chemistry models (quasi-neutral) cannot incorporate repetitive, nsec time scale sheath dynamics and plasma shielding

Approach:

- Predict plasma E/N and coupled pulse energy using nsec pulse plasma / sheath model
- Incorporate results into fuel-air plasma chemistry model
Previous results:
Repetitive nsec discharge pulse energy measurements

Nitrogen, P=300 torr, v=100 kHz

Nitrogen, P=350 torr, v=100 kHz
0.3 seconds after start (pulse # 30,000)

Pulse energy 11 mJ/pulse
Discharge power 110 W

What are the electric field and the electron density?
Previous results:
Analytic nsec pulse discharge plasma / sheath model

- Equations for electron and ion number density
- Poisson equation for the electric field
- Plane-to-plane discharge geometry
- Voltage pulse: Gaussian fit to experimental waveform
- Dielectric plate charging / plasma shielding

Analytic solution: time-dependent electron density and electric field in the plasma, coupled pulse energy
Excellent agreement with numerical solution, experimental data
Previous results:

Analytic nsec pulse discharge plasma / sheath model

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Power density, kW/cm³

- **Numerical model**
- **Analytic solution**

Breakdown

Shielded plasma

Coupled pulse energy, mJ

- **Value inferred from TALIF O atom measurements**

- **P*=100 torr**
- **P*=80 torr**
- **P*=60 torr**
- **P*=40 torr**

\[
Q_{\text{total}} = Q_{\text{break}} + Q_{\text{after}} \approx \frac{1}{2} C_{\text{load}} V_{\text{peak}}^2 \left(\frac{V_0}{V_{\text{peak}}} \right)^2 + \frac{\sqrt{2\pi}}{V_{\text{RC}} T_{\text{pulse}}} \]

- **Coupled pulse energy scales with the number density, can be increased by increasing peak voltage, reducing pulse duration**

- **Excellent agreement with numerical solution, experimental data**
Objective: measure time- and space-resolved electric field and electron density in nsec pulse discharge plasmas using psec CARS and Thomson scattering; comparison with the model

Outcome: predictive capability for electron impact kinetic processes in the plasma
Thrust 4. Studies of diffusion and transport of active species in representative 2-D reacting flow geometries

Task 12: Ignition and flameholding in nonequilibrium plasma cavity flows at low static temperatures

Goal: Determine viable approaches to flameholding in high-speed flows using low-temperature plasmas. We simply cannot process the entire flow with the plasma!
Previous results: cavity ignition in premixed ethylene-air flows by nsec plasma (25 kV, 20 nsec, 40 kHz)

Fuel-air, 200 torr, 50 m/s

Air, 200 torr, 50 m/s

Fuel-air, 150 torr, 25 m/s

Air, 150 torr, 25 m/s

Diffuse plasma in air, filamentation in fuel-air during ignition, diffuse plasma after ignition
Previous results: cavity ignition and flameholding in premixed and non-premixed ethylene-air flows by nsec plasma

Ignition and stable flameholding in both premixed and non-premixed flows up to 100 m/sec (global $\phi=1$ in both cases)

- 80-90% burned fuel fraction
- Plasma power \sim100 W, combustion energy release 35 kW

After ignition, plasma needs to be “on” at all times (flame blow-off without plasma)
Objectives:

- Further studies of cavity ignition and flameholding by repetitive nsec pulse plasmas in fuel injection flows (hydrogen and hydrocarbons)
- High frame rate (10-20 kHz) NO and OH PLIF imaging of ignition process using burst mode laser
- Increasing flow velocity beyond 100 m/sec, operating at low global equivalence ratios ($\phi=0.1-0.2$)
- Comparison with kinetic modeling calculations using reduced plasma chemical ignition mechanism. Plasma flameholding mechanism after ignition – thermal or not?

Outcome: Demonstration of true predictive capability of the model