Corrosion Prevention and Control Program at Corpus Christi Army Depot

Army Corrosion Summit
February 9, 2010

John Macha
CCAD Material and Process Engineering Division
CPC Program Co-Manager
1. REPORT DATE
09 FEB 2010

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Corrosion Prevention and Control Program at Corpus Christi Army Depot

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Corpus Christi Army Depot, Material and Process Engineering Division, 308 Crecy Street, Stop 28, Corpus Christi, TX, 78419

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
2010 U.S. Army Corrosion Summit, Huntsville, AL, 9-11 Feb

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

- Background
- Concerns/Issues
- Significant Actions
- Future Plans
Concerns/Issues

Background: Need to effectively process and store aerospace materials (some particularly susceptible to corrosion) in a marine environment conducive to aggressive atmospheric corrosion rates.

• Main Issues
 – Proper Practices
 – Aircraft Components
 – Facilities
Practices

• Revision of D.05 Process Standard: In Process Preservation of Ferrous and Non-Ferrous Parts
 – Guided by Cleaning and Corrosion Control TM (1-1500-344-23)
 – Selected preservative application based on parameters
 • Environment (indoors, indoors w/environmental controls, etc)
 • Duration of protection required (days, weeks, etc)
• Training of personnel—both initially planned and as issues arise. Examples include:
 – Periodic STAR4D training to increase quality/efficiency of coatings (primers/paints)
 – AMCOM CPC personnel training of MFG/Process Production Div (preservative application)
 – MPED “informal” training of personnel (paint shop, QC inspectors)
Components—Issues

- Certain parts can never be unprotected
- Indoor temperature/RH fluctuations (10°F/30%)
- Upon induction, parts routed to multiple processing stations
- Idle time dictated by shop workload, “pull”
Components—Current Actions

- Ongoing investigation/trial of VpCl
 - Bags
 - Films
 - Desiccants
- Vapors form passivating layer of ions on metal surface
- Trial parts bagged after initial inspection, then processed, unwrapped/inspected at each stop
 - Favorable initial results
 - Targets susceptible parts where preservative removal is not optimal
 - Long term: large-scale use as preservative supplement/replacement
Components—Current Actions

- Protective covers for outdoor use
 - Outdoor storage not ideal, sometimes unavoidable
 - Transport carts contain parts ranging in size, applied preservative
 - Cover system is multi-layer; includes waterproof, moisture wicking, CI layers
 - Still in initial phases; large scale incorporation upon successful trials
Future Plans—Components

- Expansion of Tagnite coating application to more shop areas/potential replacement for Type VI chromic acid brush-on for magnesium
- Prototype Type VII PMB media for topcoat/primer removal from magnesium without touching Rockhard coating
- Initial testing of VpCI MIL-PRF-87937, Type IV Aircraft Cleaning Compound in Airframes Cleaning
Facilities—Issues/Activities

- 2 million ft2, 50 year-old main production facility
- 10 year, 9 phase replacement plan
- As with processed components, environment significantly accelerates facility degradation
- Cooling tower/test cell circulation systems of particular concern
- Better communication with industrial engineering, incorporating materials selection into facility projects (heat exchangers)
Future Plans—Facilities

• Possible implementation of dehumidification technologies for storage/production areas presenting greatest corrosion issues

• Use of internal corrosion monitoring systems to optimize chemical treatment/life of cooling tower/engine test cell pipelines

• More widespread use of VpCl emitters for electrical/toolboxes
Conclusions

- Local corrosion issues originate from combination of susceptible materials and detrimental environment
- Solutions often require action across several fields (material/regulatory/personnel)
- Future initiatives focus on process improvements, but proper training/adherence to new procedures essential for lasting effect