Diverse Sensing for Synergistic Protection in Urban Threat Environments

Demonstration Results

Nikola Subotic, Brian Thelen, William Buller, Brian Wilson, Joseph Garbarino, Ben Hart, Michelle Wienert, Stan Andersen, Rob Gengkinger, John Henderson

29 April, 2010

UNCLASSIFIED: Dist A. Approved for public release
2010Diverse Sensing for Synergistic Protection in Urban Threat Environments Demonstration Results

Author(s):
Nikola Subotic; Brian Thelen; William Buller; Brian Wilson, Joseph Garbarino; Ben Hart, Michelle Wienert; Stan Andersen; Rob Gengkinger; John Henderson

Performing Organization:
Michigan tech Research Institute

Sponsoring Agency:
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

Distribution/Availability:
Approved for public release, distribution unlimited

Supplementary Notes:
The original document contains color images.
Objective

- Show reasonable time, automated algorithm performance of pre-shot cueing algorithm on live, blind test collected data
Automated Detection Algorithm Flow Diagram

Processed RADAR Data
- Automatic detection and location of walls *
 - front wall
 - back wall (if poss.)

Auxiliary Information *
- Target ensemble
- Building practices

Nonparametric Detection Algorithm
- Derived from training data
- Weighted classification trees
- Estimate a posteriori probs for each target
- Decision logic/thresholding for final target/no target decision *

Spectral processing of range profiles
- Filtering
- Normalizing energy
- Spectral estimation *

Determine processing window
- offsets for front wall
- offsets for back wall or using building practices

Compute principal components (PC)
- Derived from training data
- Done for each target
- Sliding window
- Range of stretch factors *
- Utilize best match (for each target)

Declare: “Target” vs. “No – Target”

Target Classification

* Corresponds to a significantly new component for this program
Demonstration Location

- Ft. Pickett MOUT site
- Deployment at ‘Warehouse building’ (T9)
- Processing/display at ‘Schoolhouse’ building (T2)
MTRIs Rotating Antenna Stage

- Antenna head mounted on adapter for servo-controlled rotation stage
 - provides estimates of antenna azimuth

 Collection used continuous rotation rate of 0.2 °/s with frequency sweep rate of 2 Hz
 - emulates a rotating antenna at 200 °/s with 2 kHz frequency sweep rate
Demonstration Structure

- Azimuth scan on single building
 - Set up time too long to move, re-align instrumentation system

- Confusers/targets need to remain ‘still’ during illumination
 - Long sweep time of instrumentation radar (100 msec) and short wavelength (3mm, W band) make data susceptible to scintilation and smear
 - Field operational Radars have much faster sweep times (<100usec) which will effectively ‘freeze’ signatures

- Targets will be > 1 foot behind plane of walls
 - EO system will see threat if exposed at opening

- Radar and target will have direct line of site and have weapon pointed at Radar
 - Threat is defined as weapon pointed at vicinity of Radar
Measures to Mitigate Scene Motion

- Long chirp time (100ms) and non-uniform filter transition time coupled with small wavelength (W band) creates phase anomalies in moving targets.

- Used monopods in Demo to mitigate PRF spoilage due to range-relative target motion.
• Scan set #1
 – False alarm testing
 • Scan #1: building with confuser targets
 – Empty rooms, people, people with implements
 » Positioning of people determined on site with government
 • Scan #2: completely empty building, shutters open
 • Scan #3: empty building with shutters closed

• Inspection of processing results

• Scan set #2
 – Detection testing
 • 3 Scans
 • 4 Weapons
 – RPG-7, Dragunov, AK-47, AR-10
 • Positioning of target determined on site with government
 • Confusers added as resources permit
Demo April 2010
Detection Results

- Demo performed under TARDEC supervision
 - TARDEC chose deployment scenarios in real time

- Deployment of weapons and confusers under control of TARDEC
 - Weapons: RPG, Dragunov, AK-47, AR-10
 - Confusers: Person, person with tripod, person with broom
 - 6 building scans: 2 empty building, 4 with weapons/confusers

- Automated detection system
 - Data moved from collection system to detection system via data stick
 - All parts of detection system were automated

- Demo handled as a blind test
 - Truth was not used during testing, only for display purposes
Demo April 2010
Detection Results – tp9037

Scenario
Empty building, shutters open

Munitions
• None

Confusers
• None

Results
• No false alarms

Building
Front Wall
Inner Back Wall
Outer Back Wall

RADAR Data

Sweep Number →

Declarations

Target

Clutter

Sweep Number →
Scenario

Empty building, people as confusers

Munitions
- None

Confusers
- Person

Results
- No false alarms
Deployed Persons
Demo April 2010
Detection Results – tp9039

Scenario
Empty building, shutters closed

Munitions
• None

Confusers
• None

Results
• No false alarms

RADAR Data

Sweep Number

Target

Clutter

Sweep Number
Scenario

Munitions
• Dragunov
• RPG
• AK47
• AR10

Confusers
• Person with Tripod

Results
• RPG, AK47, AR10 detected as weapons
• Dragunov was missed
• Person+Tripod was not a false alarm

Notes
• Dragunov was in back room, outside search area
Deployed Persons

Confuser targets aimed at RADAR

AR-10 in prone position aimed through kill hole
Scenario

Munitions
• RPG
• AK47
• AR10
• Dragunov

Confusers
• Person with Tripod

Results
• RPG, AK47, AR10, and Dragunov detected as weapons
• Person+Tripod declared as clutter
Deployed Persons

Confuser targets aimed at RADAR
Scenario

Munitions
- Dragunov
- AK47
- RPG
- AR10

Confusers
- Person with Tripod
- Person with Broom

Results
- Dragunov, AK47, RPG, and AR10 detected as weapons
- Person+Tripod declared as clutter
- Person+Broom declared as clutter

Notes
- AK47 and Dragunov in same room

Demo April 2010
Detection Results – tp9042

RADAR Data

AK47 + Dragunov
RPG
Person + Tripod
Person + Broom
AR10

Declarations
Deployed Persons

Window 1 had 2 weapons (AK-47 and Dragunov)

Dragunov in prone position aimed through kill hole
Summary: Algorithm Declarations

Clutter Test, Windows Open

<table>
<thead>
<tr>
<th>Window 1</th>
<th>Window 2</th>
<th>Window 3</th>
<th>Window 4</th>
<th>Window 5</th>
<th>Window 6</th>
<th>Window 7</th>
<th>Window 8</th>
<th>Window 9</th>
<th>Window 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutter Test, Windows Open</td>
<td>Person</td>
<td>Person</td>
<td>Person</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Person</td>
<td>Person</td>
</tr>
</tbody>
</table>

Clutter Test, Windows Closed

- Detect Test 1
 - Dragunov
 - RPG
 - Person + Tripod
 - AK47
 - AR10

- Detect Test 2
 - RPG
 - Person + Tripod
 - AK47
 - AR10
 - Dragunov

- Detect Test 3
 - AK47 + Dragunov
 - RPG
 - Person + Tripod
 - Person + Broom
 - AR10

Detection

- All weapons within search range of system were detected
- No false alarms
- Automated algorithm used 4 minutes for declarations (non-real time code)

Missed Detection/Outside Search Area

- Correct Declaration
- Incorrect Declaration

False Alarm

- Confuser