Actuation and Response in Microsystems

Prof. Mark Rodwell

Electrical and Computer Engineering Department and Director of Nanofabrication Laboratory, University of California, Santa Barbara

The views and opinions presented by the invited speakers are their own and should not be interpreted as representing the official views of DARPA or DoD

Approved For Public Release, Distribution Unlimited
Abstract

THz and nm Transistors for 1-1000 GHz Electronics

MTO (DARPA Microsystems Technology Office) Symposium, 2009, Mar 2-5, San Jose, CA. U.S. Government or Federal Rights License

Approved for public release; distribution unlimited

Keywords

- THz Transistors
- nm Transistors
- 1-1000 GHz Electronics

Security Classification

- Unclassified

Number of Pages

- 27
THz and nm Transistors for 1-1000 GHz Electronics

Mark Rodwell
University of California, Santa Barbara
The End (of Moore's Law) is Near (?)

It's a great time to be working on electronics!

Things to work on:

* InP transistors: extend to 3-4 THz → GHz & low-THz ICs
* GaN HEMTs: powerful transmitters from 1-300 GHz
* Si MOSFETs: scale them past 16 nm
* III-V MOSFETs: help keep VLSI scaling (maybe)
* VLSI transistors: subvert Boltzmann → solve power crisis
* mm-wave VLSI: massively complex ICs to re-invent radio
Why THz Transistors?
Why Build THz Transistors?

- THz amplifiers \(\rightarrow \) THz radios
- Imaging, sensing, communications
- High-performance receivers
- Fiber optics
- 500 GHz digital logic

Diagram:
- Transistor Power Gain, dB
- Frequency, Hz

Graph:
- Precision analog design at microwave frequencies
- Higher-Resolution Microwave ADCs, DACs, DDSs

Approved For Public Release, Distribution Unlimited
How to Make THz Transistors
Frequency Limits and Scaling Laws of (most) Electron Devices

\[\tau \propto \text{thickness} \]

\[C \propto \text{area} / \text{thickness} \]

\[R_{\text{top}} \propto \frac{\rho_{\text{contact}}}{\text{area}} \]

\[R_{\text{bottom}} \propto \frac{\rho_{\text{contact}}}{\text{area}} + \frac{\rho_{\text{sheet}}}{4} \cdot \frac{\text{width}}{\text{length}} \]

\[I_{\text{max, space-charge-limit}} \propto \frac{\text{area}}{(\text{thickness})^2} \]

\[\Delta T \propto \frac{\text{power}}{\text{length}} \times \log \left(\frac{\text{length}}{\text{width}} \right) \]

To double bandwidth,

- reduce thicknesses 2:1
- improve contacts 4:1
- reduce width 4:1, keep constant length
- increase current density 4:1
Bipolar Transistor Scaling Laws

Changes required to double transistor bandwidth:

<table>
<thead>
<tr>
<th>parameter</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>collector depletion layer thickness</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>base thickness</td>
<td>decrease 1.414:1</td>
</tr>
<tr>
<td>emitter junction width</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>collector junction width</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>emitter contact resistance</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>current density</td>
<td>increase 4:1</td>
</tr>
<tr>
<td>base contact resistivity</td>
<td>decrease 4:1</td>
</tr>
</tbody>
</table>

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.
Changes required to double transistor bandwidth:

<table>
<thead>
<tr>
<th>parameter</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>gate length</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>gate dielectric capacitance density</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>gate dielectric equivalent thickness</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>channel electron density</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>source & drain contact resistance</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>current density (mA/µm)</td>
<td>increase 2:1</td>
</tr>
</tbody>
</table>

Linewidths scale as the inverse of bandwidth because fringing capacitance does not scale.
THz & nm Transistors: it’s all about the interfaces

Metal-semiconductor interfaces (Ohmic contacts):
very low resistivity

Dielectric-semiconductor interfaces (Gate dielectrics):
very high capacitance density

Transistor & IC thermal resistivity.
THz Bipolar Transistors
<table>
<thead>
<tr>
<th>Component</th>
<th>Industry</th>
<th>University 2007-9</th>
<th>University Appears Feasible</th>
<th>Maybe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitters</td>
<td>512</td>
<td>256</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Base</td>
<td>300</td>
<td>175</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>Collector</td>
<td>150</td>
<td>106</td>
<td>75</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>9</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>

Values:
- 32 nm width
- 1 Ω·μm² access ρ
- 30 nm contact width,
- 1.25 Ω·μm² contact ρ
- 37.5 nm thick,
- 72 mA/μm² current density
- 2-2.5 V, breakdown

Frequencies:
- f_t: 370 → 1400 GHz
- f_{max}: 490 → 2800 GHz

Applications:
- Power Amplifiers: 245 → 1400 GHz
- Digital 2:1 Divider: 150 → 660 GHz

Diagram:
- T_b, W_e, W_{bc}, T_c
InP DHBTs: September 2008

![Graph showing f_max vs. f_t for various DHBT technologies.]

Popular Metrics:
- f_t or f_{max} alone
- $(f_t + f_{max}) / 2$
- $\sqrt{f_t f_{max}}$
- $(1/f_t + 1/f_{max})^{-1}$

Much Better Metrics:
- PAE, associated gain, mW/\mu m
- F_{min}, associated gain, digital
 - f_{clock}, hence
 - $(C_{cb} \Delta V / I_c)$,
 - $(R_{ex} I_c / \Delta V)$,
 - $(R_{bb} I_c / \Delta V)$,
 - $(\tau_b + \tau_c)$

Updated Sept. 2008
Ohmic Contacts Good Enough for 3 THz Transistors

64 nm (2.0 THz) HBT needs $\sim 2 \ \Omega \cdot \mu m^2$ contact resistivities

32 nm (2.8 THz) HBT needs $\sim 1 \ \Omega \cdot \mu m^2$

| Contacts to N-InGaAs* | Mo | MBE in-situ | 0.3 (+/- 0.3) $\Omega \cdot \mu m^2$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TiW</td>
<td>ex-situ</td>
<td>~1 to 2 $\Omega \cdot \mu m^2$</td>
<td></td>
</tr>
</tbody>
</table>

| Contacts to P-InGaAs | Mo | MBE in-situ | below 2.5 $\Omega \cdot \mu m^2$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd/...</td>
<td>ex-situ</td>
<td>0.36 (+/- 0.3) $\Omega \cdot \mu m^2$</td>
<td></td>
</tr>
</tbody>
</table>

measured emitter resistance remains higher than that of contacts.
THz HBTs: MOSFET-like Processes for 64, 32 nm Nodes

emitter | metal | planarize | etch | pattern

Planarization boundary

Approved For Public Release, Distribution Unlimited
nm MOSFETs
FET Scaling Laws

Changes required to double transistor bandwidth:

<table>
<thead>
<tr>
<th>parameter</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>gate length</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>gate dielectric capacitance density</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>gate dielectric equivalent thickness</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>channel electron density</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>source & drain contact resistance</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>current density (mA/μm)</td>
<td>increase 2:1</td>
</tr>
</tbody>
</table>

What do we do if gate dielectric cannot be further scaled?
III-V MOSFETs for VLSI

What is it?
MOSFET with an InGaAs channel

Why do it?
low electron effective mass → higher electron velocity
more current, less charge at a given insulator thickness & gate length
very low access resistance

What are the problems?
low electron effective mass → constraints on scaling!
must grow high-K on InGaAs, must grow InGaAs on Si

Synopsis
III-V MOSFET might win... if Si gate dielectric cannot scale below 0.5 nm
THz Field-Effect Transistors (THz HEMTs)
FET Scaling Laws

Changes required to double transistor bandwidth:

<table>
<thead>
<tr>
<th>parameter</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>gate length</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>gate dielectric capacitance density</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>gate dielectric equivalent thickness</td>
<td>decrease 2:1</td>
</tr>
<tr>
<td>channel electron density</td>
<td>increase 2:1</td>
</tr>
<tr>
<td>source & drain contact resistance</td>
<td>decrease 4:1</td>
</tr>
<tr>
<td>current density (mA/µm)</td>
<td>increase 2:1</td>
</tr>
</tbody>
</table>

InGaAs HEMTs are best for mm-wave low-noise receivers... but there are difficulties in improving them further.

Approved For Public Release, Distribution Unlimited
Why HEMTs are Hard to Improve

1st challenge with HEMTs: reducing access resistance

low electron density under gate recess \rightarrow limits current
gate barrier lies under S/D contacts \rightarrow resistance

2nd challenge with HEMTs: low gate barrier

high tunneling currents with thin barrier
high emission currents with high electron density

\textbf{III-V MOSFETs do not face these scaling challenges}
InGaAs MOSFETs as THz Low-Noise Amplifiers

Why?

Much lower access resistance in S/D regions

Higher gate barrier → higher feasible electron density in channel

Higher gate barrier → gate dielectric can be made thinner

Estimated Performance (?)

2 THz cutoff frequencies at 32 nm gate length
VSLI for mm-wave & sub-mm-wave systems
Billions of 700-GHz Transistors → Imaging & Arrays

65 nm CMOS: ~5 dB gain @ 200 GHz

22 nm will be much faster yet.

What can you do with a few billion 700-GHz transistors?

Build Transmitter / Receiver Arrays

100's or 1000's of transmitters or receivers
...on < 1 cm² IC area
...operating at 100-500 GHz.
Billions of 700-GHz Transistors → Imaging & Arrays

Arrays for point-point radio links:

\[\text{bit rate} \cdot \text{distance}^2 \propto (\# \text{array elements})^2 \cdot \text{wavelength}^2 \]

Arrays for (sub)-mm-wave imaging:

\[\# \text{resolvable pixels} = \# \text{array elements} \]

Arrays for Spatial-Division-Multiplexing Networks:

\[\# \text{independent beams} = \# \text{array elements} \leq \frac{4 \cdot \text{array area}}{\text{wavelength}^2} \]
It's a great time to be working on electronics!

Device scaling (Moore's Law) is not yet over.

Challenges in scaling:
 contacts, dielectrics, heat

Multi-THz transistors:
 for systems at very high frequencies
 for better performance at moderate frequencies

Vast #s of THz transistors
 complex systems
 new applications.... imaging, radio, and more