Vehicle Thermal Management Simulation at TARDEC

Scott Shurin
586-282-8868
scott.shurin@us.army.mil
Vehicle Thermal Management Simulation at TARDEC

1. REPORT DATE
07 MAY 2010

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Vehicle Thermal Management Simulation at TARDEC

5. AUTHOR(S)
TARDEC Scott Shurin

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

8. PERFORMING ORGANIZATION REPORT NUMBER
20802

9. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC

10. SPONSOR/MONITOR’S REPORT NUMBER(S)
20802

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.
Outline

- TARDEC/CASSI Introduction
- Why TARDEC Performs Simulation
- Interior Cooling Analysis
- Engine/Underhood Cooling Analysis
- Conclusion
• Tank Automotive Research, Development and Engineering Center (TARDEC)
 – Develops, integrates, and sustains the technology for all manned and unmanned DOD ground systems
 – The main Research and Development Engineering (R&DE) organization for ground systems integration and technology

• Consists of Three Major Business Groups:
 – Engineering Business Group
 – Product Development Business Group
 – Research Business Group
 • Includes CASSI (Next Slide)
CASSI ANALTICS

Concepts
Analysis
Systems
Simulation
Integration

Energetic Effects & Crew Safety
Stats, Optimization & Data Mining
Reliability & Durability
Powertrain M&S
Dynamics
CFD & Signatures

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
Why TARDEC Performs Simulation

• Pre-Request For Proposal (RFP) work
 – Need to ensure specifications are technically feasible before issuing RFPs
 – Analysis of Alternatives (AOA) studies
• Evaluation of proposals and oversight of supplier efforts
 – ‘Honest Broker’ - proposed solutions should be evaluated on a level playing field
 – Verify supplier analyses are reasonable
• Rapid response for field fixes
 – Determine how new equipment will affect vehicle performance
 – Provide initial assessment before starting formal contract process for proposed upgrades
• Analysis for technology demonstrator vehicles
• Direct R&DE efforts through cooperation with industry and universities
 – Form partnerships to direct development efforts in areas of interest to the Army
Interior Cooling Analysis

- **Objective:** Determine environment in crew cabin during extreme hot conditions
 - Size A/C System
 - Evaluate electronics cooling (will components fail?)
 - Evaluate crew effectiveness/comfort
 - Optimize HVAC Duct Design

- **Potential Analysis Scenarios**
 - Steady-state
 - Pull down
 - Diurnal cycle (24+ hours)

- **Environmental conditions**
 - Extreme High Temperatures
 - >125 °F ambient temperature
 - 1120 W/m² solar load
 - Environment: Tunnel or Outdoor
Vehicle technical data is not always available—especially:
- Material properties (density, specific heat, conductivity)
- Cooling system performance specifications (HVAC capacity, flow rates, etc.)
- Surface properties (emissivity, solar absorptivity)
- Engine exhaust flow rates and temperatures (underbody heating)

CAD data may be difficult to obtain or may be outdated

Difficulties with electronic components:
- Obtaining reasonable values for heat rejection (duty cycle)
- Temperature limits—when does failure actually occur?
- Modeling of internal cooling fans inside electronic enclosures boxes

Multiple modes of heat transfer (multiple codes?):
- Need to model environmental heat loads
 - Solar position, irradiation
- Need to calculate internal and external convective heat transfer
- Need to model internal advection
- Need to model thermal conduction and thermal mass
Internal Cooling Analysis Methodology

Model Preparation

- **Surface Prep**
 - Prepare surface for CFD Model

- **Surface Prep**
 - Build surfaces for Thermal Model

- **CAD Geometry**

Analysis: Iteration Required

- **CFD Model**
 - Calculates advection (air flow patterns)
 - Calculates heat transfer coefficients

- **Thermal Model**
 - Predicts surface temperatures
 - Calculates effects of environmental loads

- **Heat transfer coefficients & Fluid Temperatures**

- **Sub volume Code**
 - Divides interior into fluid nodes and connected surfaces
 - Uses CFD to calculate flow rates between fluid nodes

- **Surface temperatures**
Internal Cooling Analysis: Sub-Volume Approach

1. Calculate flow field CFD
2. Divide domain into sub-volumes
3. Calculate advection between nodes
4. Add advection links to thermal model
• Why couple CFD with a Thermal Code?

<table>
<thead>
<tr>
<th>Category</th>
<th>CFD Model</th>
<th>Thermal Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>Uses volume elements</td>
<td>Uses surface elements (shells)</td>
</tr>
<tr>
<td></td>
<td>Models actual geometry</td>
<td>Geometry adjusted to model heat paths</td>
</tr>
<tr>
<td></td>
<td>Quick surface preparation (with wrapping)</td>
<td>Surface preparation takes a long time (can't use wrapper)</td>
</tr>
<tr>
<td>Setup</td>
<td>Limited material and surface property database</td>
<td>Extensive material and surface property database</td>
</tr>
<tr>
<td>Physics</td>
<td>Calculates advection</td>
<td>Advection must be manually setup</td>
</tr>
<tr>
<td></td>
<td>Calculates surface heat transfer coefficients</td>
<td>Convection coefficients based on handbook values</td>
</tr>
<tr>
<td></td>
<td>Cannot perform IR signature analysis</td>
<td>Can be extended to perform IR Signature Analysis</td>
</tr>
<tr>
<td></td>
<td>Manual setup for weather model</td>
<td>Incorporates weather model</td>
</tr>
<tr>
<td></td>
<td>Requires manual setup of solar angle</td>
<td>Calculates solar angle</td>
</tr>
<tr>
<td></td>
<td>Does not calculate terrain effects</td>
<td>Calculates terrain reflection</td>
</tr>
<tr>
<td>Run Time</td>
<td>Long run time for transient simulations</td>
<td>Transient simulations run quickly</td>
</tr>
</tbody>
</table>

• Coupling allows each code to use it’s particular strengths
 – CFD to calculate advection and convection
 – Thermal for environment and radiation effects

• Disadvantage to Coupling:
 – Thermal model requires clean surface with manual cleanup

• Modeling both solids and fluids in one model may resolve this issue, but long transients may still be a challenge
Interior Cooling Analysis: Examples

HVAC Duct Design

Component Temperatures

Exterior Flow Field

Crew Area

Underhood

Simulation: Hatch Open
Enhancement to Interior Cooling Analysis

- **Objective:** Assess crew’s ability to perform mission based on interior environment
- **On-going CRADA (Cooperative Research And Development Agreement)**
 - TARDEC oversees development and provides some funding
 - GM shares experience and lessons learned
 - Small business develops code and sells commercially
- **Soldier Thermal Fatigue Model**
 - Based on University of California Berkley model
 - Define metabolic heat rates by role (driver, gunner, commander)
 - “Comfort” index generated from local skin temps and body core temp
• Objective: Assess cooling performance of vehicle
 – Determine ability of system to operate at high ambient temperatures
 • Predict performance
 – Fan Sizing/System Resistance
 • Reduce power requirement

• Analysis Geometries
 – Underhood
 – Cooling Tower

• Extreme operating conditions
 – 125 °F Ambient temperature
 – High engine and transmission load
 • Full engine power
 • High tractive effort or steep grade
Underhood/Engine Cooling Analysis
Challenges/Considerations

• Availability of Data
 – Vehicle Geometry
 – Heat Exchanger Performance
 • Pressure vs. Flow
 • Heat rejection map
 – Heat rejection requirements
 • Often not available early in design phase
 • May not be accurate for legacy vehicles which have been modified
 – Fan Modeling
 • Availability of fan geometry
 • Applicability of CFD code’s fan model
 – May not be applicable for vane-axial fan

• Physics
 – thermal or cold flow?
 • Cold flow is useful for validation purposes
 • Including temperature provides more information, but is more difficult to validate experimentally
Underhood/Engine Cooling Examples

Fan Operating Points/Power Prediction

Pressure Trace Through System

Underhood Cooling

Fan Pressure/Power Budgeting
Conclusion

• Vehicle thermal analysis plays an important role at TARDEC

• There are two major areas of interest
 – Interior cooling
 • Predicting potential failure of electronic components
 • Sizing HVAC capacity
 • Determining Crew effectiveness/comfort
 – Underhood/Engine thermal analysis
 • Predicting vehicle performance at high ambient temperatures
 • Determining fan/cooling system size

• There are challenges
 – Obtaining reasonable performance data for system components
 – Obtaining CAD Data
 – CAD Cleanup for thermal model vs. CFD model
THANK YOU

Questions?