JOCCOTAS
2-4 May 2005
Composite Technology Insertion at HAFB

Air Force Tactical
Shelters/Radomes/Towers
Product Group

Innovation & Excellence
1. REPORT DATE
MAY 2005

2. REPORT TYPE

3. DATES COVERED
00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Composite Technology Insertion at HAFB

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
OO-ALC/LHH,Hill AFB,UT,84056

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
4th Bi-Annual DOD JOCOTAS Meeting with Rigid & Soft Wall Shelter Industry & Outdoor Exhibition, 2-4 May 2005, Port Hueneme, CA

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT unclassified
b. ABSTRACT unclassified
c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES 26

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Composite Initiative

- **Objective**
 - Replace corroded structures with composite materials.
 - Shelters
 - Towers
 - Radomes

- **Advantages**
 - Composites are not subject to corrosion
 - Increased performance
 - Reduced maintenance costs
 - Increased life cycle
Other Teaming Partners/Sponsors

<table>
<thead>
<tr>
<th>NEXRAD</th>
<th>AFMC</th>
<th>JOCOTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA</td>
<td>PACAF</td>
<td>ARMY</td>
</tr>
<tr>
<td>NOAA</td>
<td>AFSPC</td>
<td>NAVY</td>
</tr>
<tr>
<td>NWS</td>
<td>AFSOC</td>
<td>Air Force</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LRM Inc. (TCD Inc.)</th>
<th>Strongwell Inc.</th>
<th>AFC Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebCore Tech.</td>
<td>AK Supply Inc.</td>
<td>ATK Composites</td>
</tr>
<tr>
<td>Triton Systems</td>
<td>Northern Power Inc.</td>
<td>MCECC Inc.</td>
</tr>
<tr>
<td>RSI Inc.</td>
<td>ISO Truss Inc.</td>
<td>Total Solutions Inc.</td>
</tr>
<tr>
<td>SES Inc.</td>
<td>ITI Inc.</td>
<td>SUNREZ Inc.</td>
</tr>
<tr>
<td>AHTNA Gov. Services</td>
<td>AMPRO Inc.</td>
<td>KaZak Inc.</td>
</tr>
<tr>
<td>CSS Inc.</td>
<td>Touchstone Inc.</td>
<td>Nanosonic Inc.</td>
</tr>
<tr>
<td>ICRC</td>
<td>AMPRO Inc.</td>
<td>Integument Inc.</td>
</tr>
<tr>
<td>Lynntech Inc.</td>
<td>AGS Inc.</td>
<td>Luna Inc.</td>
</tr>
<tr>
<td>Diamond Inc.</td>
<td>Schafer Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goss Inc.</td>
<td></td>
</tr>
</tbody>
</table>

Innovation & Excellence
Composite Shelter Program

• **Objective**
 – Develop new generation of composite shelters meeting a variety of mission requirements
 • Fixed Site shelters
 • ISO, LMS, S280
 – Field new shelters at a competitive price
 – Reduction of maintenance costs associated with corrosion
System Engineering Approach

- SFR - System Functional Review
- PDR - Preliminary Design Review
- CDR - Critical Design Review
- SVR - System Verification Review
- FQT - Formal Qualification Testing
- FCA/PCA - Functional / Physical Configuration Audit

Innovation & Excellence
Tracking Instrumentation Subsystem (TIS) replacement for Stony Range at Eielson AFB

• **Objective**
 – Develop a composite shelter with enclosed power/communications systems to replace 8 existing TIS units

• **Status**
 – Completed prototype and subsequent Units
 – Installed communications systems with remote monitoring capabilities
 – TRR held Mar 2005

• **Upcoming Tasks**
 – Qualification Testing
 – Installation of 8 shelters FY05
Additional Eielson Work

- **Description**
 - 8 units for use at the Yukon range with the possibility of additional work beyond that

- **Status**
 - On contract

- **Upcoming Tasks**
 - To be completed and delivered to Eielson in the Fall of 2005
TACAN Shelter for Beale

- **Objective**
 - Replace severely damaged TACAN building with composite shelter at Beale AFB

- **Status**
 - In communication with Civil Engineering people at Beale to build structure per their specifications

- **Upcoming Tasks**
 - Anticipate additional customers who would benefit from this type of shelter for use with TACAN systems
USAFE Shelter

• **Objective**
 – Replace corroded weather radar shelter with composite shelter for USAFE

• **Status**
 – Vendor on Contract

• **Upcoming Tasks**
 – Anticipate additional customers who would benefit from this type of shelter

Innovation & Excellence
NAVY BMF ISO Shelter

• **Objective**
 – DEM/QUAL an 8’x8’x20’ Composite BMF ISO Shelter
 – Conduct EMD for long-term procurement

• **Status**
 – 2 Prototypes
 – Conducted ISO development testing
 – 6-high stacking demonstrated
 – 3rd prototype under way

• **Upcoming Tasks**
 – ISO Testing 9-high stacking loads.

Joints of Thermoplastic ISO Shelter Prototype, Thermoplastic Prototype Shelter
• **Objective**
 – Develop a light-weight, EMI-protected, HMMWV-mounted, rigid wall LMS composite shelter
 – Develop composite EMI technology in partnership with Defense Threat Reduction Agency (Funding through SBIR Program)

• **Status**
 – Produced first prototype composite LMS
 – Preparing for EMI Testing
 – Materials: Graphite skin, foam core, copper mesh

• **Upcoming Tasks**
 – Complete EMI Testing
Composite Shelters Summary

- 20 Fixed Site Shelters currently on contract
- Composite ISO, LMS continuing development testing
 - Commercialization FY07
VAFB Weather Instrument Towers

- **Objective**
 - Replace unsafe, badly corroded weather towers with tilt-down composite towers
 - Used SBIR funded composite technology for tower development

Corroded staircase weather tower (VAFB)

Newly erected composite ISOTRUSS Tower (VAFB)
VAFB Weather Instrument Towers

Tilt-down tower facilitates easy service

- Safer for service operations
- Technicians do not need to climb tower

Climbing was required for servicing
Innovation & Excellence

Ogden Air Logistics Center

Towers 57 and 58, Erected Dec 2004

Vandenberg AFB, CA
Successful Tower Solutions

- **Tower 60 at VAFB**
 - 60-ft Composite Weather Tower
 - Erected Oct 2003

- **Tower 215 at CCAS**
 - 60-ft Composite Weather Tower
 - Erected May 2003
 - No damage to tower during hurricanes Frances and Ivan
Composite Glideslope Towers to be installed at:

- Andersen AB, Guam (Est. June 2005)
- Yokota AB, Japan (Est. Sept 2005)
- Misawa AB, Japan (Est. FY06)
Glideslope Tower Solution

- Commercially available product (German based company)
- Only tower to meet frangibility requirement (ICAO 2005)
- Improved performance: Deflection <1” at 60 ft and 56 mph wind, Current tower = 3”
- Withstand high wind speeds: up to 400 kph (248 mph)
- Corrosion resistant: Composite design; UV secure paint
- ‘Tilt-up’ tower design – minimal installation time
Monopole Tower Solutions

- 14 Monopole Towers to be built for the 45th Space Wing at Cape Canaveral in June 2005
Composite Towers Summary

- 4 weather towers fielded – 1 at CCAS, 3 at VAFB
- 1 weather tower on contract
 - Expect FY05 install at CCAS
- 14 monopoles
 - Expect FY05 install at CCAS
- 5 glide slope towers on contract
 - Expect 1st install FY05 at AAFB
Composite Radome Program

• **Objective**
 – Develop and field new generation of composite radomes
 • Less expensive
 • Improved properties
 – Impact resistance
 – Transmission
 – Reduced maintenance
Radome Industry Day

- Held 18-19 October 2004 at Hill AFB
- 11 Radome and plastics manufacturing companies attended
 - MFG/Ratech
 - Prime Manufacturing Technologies, Inc.
 - L3 Communications/ESSCO
 - Saint-Gobain
 - Starwin Industries
 - ATK (i.e. ATK-MRC and ATK-Composites)
 - Battelle
 - Thermoplastic Composite Designs (TCD)
 - Antennas for Communications (AFC)
 - Composite Matrix Corporation
 - General Dynamics
MILSTAR Radomes

• **Project Status**
 – Project on schedule for deployment 20 May 2005
 – Dual thermoplastic/thermoset path being pursued
 – RF testing for both designs/materials completed - Both exceed RF requirement
 – Mechanical/physical coupon testing ongoing
 – Initial FEA for each design complete
 – Initial impact analysis complete advanced impact analysis ongoing
 – Prototypes for both designs complete
Program Outlook

• MILSTAR Radome success will lead into additional radome projects with AFSPC

• PACAF Replacement List
 – Currently exploring options for AN/FPS-117 Radomes
 – Communicating with Program Office for VOR, VORTAC, and TACAN systems

Cape Newenham, AK
Cape Romanzof, AK
Program Outlook

Working with the Navy for “Low Risk” Composite Shipboard Equipment
Shelters/Radomes/Towers

Innovation & Excellence
SBIR Projects

<table>
<thead>
<tr>
<th>SBIR Projects</th>
<th>SBIR Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop composite ISO shelter</td>
<td>Develop low cost, high tensile strength composite materials</td>
</tr>
<tr>
<td>Develop composite LMS shelter</td>
<td>Develop advanced composite structural solution for tall, narrow structures</td>
</tr>
<tr>
<td>Develop UV resistant composite materials</td>
<td>Vinyl Ester Resin (VERs) without Volatile Organic Compounds (VOCs)</td>
</tr>
<tr>
<td>Develop chemical, biological, radiological agent resistant composite materials</td>
<td>Thermoplastic Large, Ground-Based Radomes</td>
</tr>
<tr>
<td>Develop thermo-plastic materials replacement for composite or metal shelters</td>
<td>Fire resistance</td>
</tr>
<tr>
<td>EMI for Fixed Site Shelters</td>
<td>Composite roller bearing</td>
</tr>
<tr>
<td>Automated pigmentation for composites</td>
<td></td>
</tr>
</tbody>
</table>