1. REPORT DATE  
AUG 1999

2. REPORT TYPE

3. DATES COVERED
00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Strategies for Modeling the Interaction of Devices, Circuits and Fields

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
North Carolina State University, Department of Electrical and Computer Engineering, Raleigh, NC, 27695

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
1

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)  
Prescribed by ANSI Std Z39-18
Strategies for Modeling the Interaction of Devices, Circuits and Fields

Michael B. Steer, The University of Leeds, James W. Mink, North Carolina State University, and, James F. Harvey, U.S. Army Research Office
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, The University of Leeds, Leeds, LS2 9JT, United Kingdom. e-mail: m.b.steer@ee.leeds.ac.uk

Many of the microwave engineering developments have come about when the electromagnetic environment has been transformed into a circuit abstraction. Three particular developments exemplify this modeling procedure. The first of these is the modeling work undertaken for radar development during the Second World War: Marcuvitz’s book [1] showed how discontinuities in waveguide could be modeled by lumped element equivalents. The second work, Collin’s Foundations of Microwave Engineering book, presented a formalism for treating distributed structures as circuit elements [2]. A third example is the pioneering work of Eisenhart and Khan [3] which presented an approach to modeling waveguide-based structures as circuit elements. In this work it was shown that quite sophisticated and accurate models could be developed for three-dimensional waveguide systems.

One fundamental issue that arises in modeling electrically large systems as a circuit representation is the assignment of system ground. Currently circuit simulators use a nodal approach in which voltages are assigned to nodes and each of these voltages is referred to a common reference point commonly called ground. In a spatially distributed system, a common reference point cannot always be defined as the spatial separation of a node and its reference point cannot be tolerated. Microstrip networks are examples of distributed structures for which reasonable approximations have been made so that they can be treated as elements in conventional circuit simulators. So, the accepted view is that the ground plane can be treated as a global reference point (common ground) even though this implies, and requires, that charges can instantaneously redistribute on the ground plane.

In this talk the global modeling of distributed microwave circuits — such as a spatial power combiner — integrating electromagnetic, circuit and thermal modeling is discussed. The talk discusses the developments in circuit theory necessary to model distributed microwave circuits and thermal networks. Then a strategy for integrating electromagnetic models into steady-state (harmonic balance) and transient circuit analysis will be presented. Then integration of thermal analysis is described. Measured and simulated results for a grid amplifier are used to illustrate the discussion.

This work was supported by a MURI program sponsored by the U.S. Army Research Office through a contract with Clemson University.