HIDE AND SEEK FROM A FIXED BASE

by

Alan R. Washburn

April 1979

Approved for public release; distribution unlimited.
Reproduction of all or part of this report is authorized.
Title: Hide and Seek From a Fixed Base

Author: Alan R. Washburn

Abstract:

An abstract hide and seek game is solved, the unique feature of which is that the hiders are constrained to return to a fixed point periodically.
Background

Suppose that a force of "hiders" has an area A available within which to hide from a force of "seekers." Each side can distribute its forces arbitrarily within A. If the density of seeker effort at the location of any given hider is s, then the hider is assumed to escape with probability $f(s)$, where $f(s)$ is some decreasing, convex function of s. The hiders want to maximize the probability of escape, and the seekers want to minimize it. If no further constraints are imposed, it is not difficult to show that each side should allocate its forces uniformly throughout the region, and that the escape probability as the value of a two-person zero sum game is $f(S/A)$, where S is the total amount of seeker effort. Our object in this report is to investigate the impact of constraints on the motion of the hiders. Specifically, we want to investigate what happens if the hiders are required to visit a particular point (a port, typically) on the boundary of A every t, while never travelling at a speed exceeding v.
We can anticipate that the escape probability will be \(f(S/A) \) when the product \(vt \) is "large," and 0 when \(vt \) is "small."

In order to simplify the analysis, the following assumptions are made:

a) the region is a circular sector (wedge)
b) the revisit point is at the apex of the wedge
c) \(f(s) = 1/(1 + s) \).

In Figure 1, the heaviness of the shading indicates the density of seeker effort for a typical seeker strategy. Note that the effort is dense in the vicinity of the apex, since the hiders must all transit through that area in order to visit the apex. A typical hider "tour" is shown. The hider basically picks a direction at random and a range from a distribution introduced in the next section, goes to the point and stays in the vicinity of that point until it is time to return to the apex. Each hider picks an independent tour after each visit to the apex.

Results

Let

\[
\begin{align*}
\theta &= \text{angle of the circular sector} \\
r_{\text{sec}} &= \text{radius of the circular sector} \\
A &= \frac{\theta r_{\text{sec}}^2}{2} = \text{area of sector} \\
v &= \text{hider speed} \\
t &= \text{revisit time} \\
r_{\text{max}} &= vt/2 = \text{maximum range of the hiders}
\end{align*}
\]
S = total amount of seeker effort
Y = S/(\theta \, r_{max}^2)
U = r_{sec}/r_{max}

The value of the game (escape probability) depends on the two dimensionless quantities Y (a normalized amount of seeker effort) and U (a normalized sector size); call it P(U,Y).

Figure 2 shows P(U,Y) as a function of Y for several values of U. Since U = 1 corresponds to the case where the maximum range of the hiders is equal to the sector radius, all values of U > 1 follow the same curve as for U = 1. The curves in Figure 2 are equivalent to:

(1) Let V = 1 - \sqrt{1 - U^2}

Case 1: for \(Y \leq V^2/6\), \(P(U,Y) = 1 - \sqrt{2Y}/3\)

(2) Case 2: for \(Y > V^2/6\), \(P(U,Y) = V/(Y + U^2/2)\)

Standard limiting operations show that

\[
\lim_{r_{max} \to 0} P(U,Y) = 0
\]

(3)

\[
\lim_{r_{max} \to \infty} P(U,Y) = 1/(1 + S/A)
\]

as anticipated.
FIGURE 1

ILLUSTRATING A HIDER PATH AND A SHADED SEEKER DENSITY
FIGURE 2. PROBABILITY OF SURVIVAL VS Y FOR VARIOUS U.
For example, suppose

\[r_{\text{max}} = 5000 \text{ mi} \]
\[r_{\text{sec}} = 1000 \text{ mi} \]
\[S = (25 \text{ hr holding time})(10^5 \text{ sq mi/hr search rate}) \]
\[= 25 \times 10^5 \text{ sq mi} \]
\[\theta = 1 \text{ radian} \]

Then \(Y = .1, U = .2, \) and \(V = .02. \) This is Case 2, and \(P(U,Y) = .164. \) If \(r_{\text{max}} \) were "very large," we would have \(P(U,Y) = 1/6. \)

The optimal strategy for the hiders is to pick an angle at random and a range from the distribution \(F(ur_{\text{max}}), \) where

\[
P(u) = \begin{cases}
0 & \text{for } 0 \leq u \leq V \\
\frac{(u-V)^2}{2V(1-u)} & \text{for } V \leq u \leq U,
\end{cases}
\]

and where \(V \) is as earlier defined. Qualitatively, the hiders have a tendency to pick large ranges, with \(Vr_{\text{max}} \) being the smallest range picked.

Let \(y(u) \) be the density of seeker effort at range \(ur_{\text{max}}, \) let \(T = \overline{\sqrt{Y}}, \) and let \(K = (Y + U^2/2)/[V(1 - V/3)]. \) Then the optimal density \(y(u) \) is
Case 1. \[y(u) = \begin{cases} \sqrt{T/u} - 1 & \text{for } u < T \\ 0 & \text{for } u \geq T \end{cases} \]

Case 2. \[y(u) = \begin{cases} K \sqrt{V/u} - 1 & \text{for } u < V \\ K - 1 & \text{for } u \geq V \end{cases} \]

Qualitatively, the searchers have a tendency to cluster near the apex, particularly in Case 1, \((Y \leq \sqrt{V/6})\). The density is actually unbounded near the apex; that is, \(\lim_{u \to 0} y(u) = \infty\).

The proof that the functions given above represent the value of the game and the optimal strategies for the two sides is the subject of the next section.

Exact Statement of the Problem

Let \(u \) be range from the apex measured in units of \(r_{max} \), so that the hiders must pick a range \(u \) for each tour in the interval \([0, U]\). Let \(F(v) \) be the C.D.F. used by the hiders. Then the hiders spend \(G(u) \) of their time within \(u \) of the apex, where

\[G(u) = F(u) + u(1 - F(u)) \]
Formula (7) is true because a hider will be within u of the apex throughout its patrol period if it picks a range smaller than or equal to u, and will spend a fraction u of its patrol time within u of the apex even if it picks a range greater than u. $F(u)$ can be any C.D.F. defined on $[0,U]$, but $G(u)$ cannot, which is what makes the problem non-trivial.

Since $y(u)$ is the density of seeker effort at range u, the escape probability for a hider averaged over time is

$$A(F, y) = \int_0^U (1 + y(u))^{-1} \, dG(u),$$

where

$$\int_0^U y(u) \, u \, du = Y \quad \text{and} \quad y(u) \geq 0.$$

Equations (7), (8), and (9) define a two-person zero sum game where the hiders select a C.D.F. $F(u)$ on $[0,U]$ and the seekers select $y(u)$ according to (9). We next show that the results quoted earlier constitute a saddle point of this game.

Proof of Results

The results shown below were discovered by using the theory of optimal control, but we will prove that the game has been solved by showing that the solution offered is a saddle point. While this is analytically simpler, it will not motivate the results.
We must show that

$$\max_{F} A(F, y^*) = P(U, Y) = \min_{Y} A(F^*, y),$$

where F^* and y^* are the functions given earlier.

Proof that $P(U, Y) = \min_{Y} A(F^*, y)$

Let $G^*(u) = F^*(u) + u(1 - F^*(u))$. Using (1) and (4), $F^*(U) = 1$, so also $G^*(U) = 1$. After substitution and simplification,

$$G^*(u) = \begin{cases}
 u & \text{for } u \leq V \\
 \frac{u^2 + V^2}{2V} & \text{for } V \leq u \leq U
\end{cases}$$

Let $g(u) = (d/du)G^*(u)$. Then we have

$$A(F^*, y) = \int_{0}^{U} g(u)/(1 + y(u)) \, du,$$

where

$$g(u) = \begin{cases}
 1 & \text{for } u \leq V \\
 u/V & \text{for } V \leq u \leq U
\end{cases}$$

Consider the Lagrangian
which is to be minimized subject to $y(u) \geq 0$. We minimize for each u separately by differentiation, obtaining the minimizing function \tilde{y}:

$$\tilde{y}(u) = \left(\sqrt{\frac{g(u)}{\lambda u}} - 1 \right)^+,$$

where $+$ indicates that $\tilde{y}(u)$ is to be 0 rather than negative. If $\lambda V < 1$, $y(u) > 0$ for all u, and

\begin{align*}
(10) \quad A(F^*, \tilde{y}) &= \int_0^U \sqrt{\lambda u g(u)} \, du \\
&= \sqrt{\lambda} \left[\int_0^V \sqrt{u} \, du + \int_0^U u/\sqrt{V} \, du \right] \\
&= \sqrt{\lambda/V} \left[\frac{2}{3} V^2 + (U^2 - V^2)/2 \right] \\
&= \sqrt{\lambda/V} \left[V^2/6 + U^2/2 \right]
\end{align*}

If \tilde{y} is to be feasible, we must also have

\begin{align*}
(11) \quad Y &= \int_0^U u\tilde{y}(u) \, du = \int_0^V \sqrt{u/\lambda} \, du + \int_0^U \frac{u}{\sqrt{V}/\sqrt{\lambda V}} \, du - U^2/2 \\
&= \frac{1}{\sqrt{\lambda V}} \left[V^2/6 + U^2/2 \right] - U^2/2
\end{align*}
Since \(U^2 + V^2 = 2V, \frac{V^2}{6} + \frac{U^2}{2} = V(1 - \frac{V}{3}) \). Solving (11) for \(\sqrt{\lambda} \) and then substituting \(\sqrt{\lambda} \) in (10), we obtain

\[
A(F^*,\tilde{y}) = P(U,Y), \quad \text{and also} \quad \lambda V < 1 \quad \text{if and only if} \quad Y > \frac{V^2}{6}. \]

If \(\lambda V \geq 1, \tilde{y}(u) = 0 \) for \(u \geq \frac{1}{\lambda} \). Let \(T = \frac{1}{\lambda} \). Then

\[
A(F^*,\tilde{y}) = \int_0^T \sqrt{\lambda u} \, du + 1 - T = 1 - \frac{T}{3},
\]

and if \(\tilde{y} \) is to be feasible we must have

\[
Y = \int_0^T u(\sqrt{\lambda u} - 1) \, du = 2T^2/3 - \frac{T^2}{2} = \frac{T^2}{6}.
\]

Solving (13) for \(T \) and substituting in (12), we obtain

\[
A(F^*,\tilde{y}) = P(U,Y), \quad \text{and also} \quad \lambda V \geq 1 \quad \text{if and only if} \quad Y \leq \frac{V^2}{6}. \]

According to Everett's theorem [1] on Lagrange multipliers,

\[
A(F^*,y) \geq A(F^*,\tilde{y}), \quad \text{so we have shown that} \quad P(U,Y) = \min_y A(F^*,y). \]

We also note that \(\tilde{y} = y^* \).

Proof that \(P(U,Y) = \max_F A(F,y^*) \)

Since \(y^*(u) \) is differentiable, we can integrate

\[
A(F,y^*) \quad \text{by parts to obtain}
\]

\[
A(F,y^*) = \frac{G(U)}{1 + y^*(U)} - \int_0^U G(u) \, B(u) \, du,
\]

where

\[
B(u) = -\left(\frac{d}{du} y^*(u) \right) / (1 + y^*(u))^2.
\]
In both Cases I and II, \(B(u) \geq 0 \) for \(u \leq V \), and \(B(u) = 0 \) for \(u \geq V \) (note \(T \leq V \) in (5)). Since \(G(u) = u + F(u)(1-u) \geq u \),

\[
A(F,y^*) \leq \frac{1}{1 + y^*(U)} - \int_0^U uB(u)du.
\]

But it is also true that \(g^*(u) = u \) for \(u \leq V \), so \(A(F,y^*) \leq A(F^*,y^*) \) for any \(F \). But we already know \(A(F^*,y^*) = P(U,Y) \), so the proof is complete.

ACKNOWLEDGMENT. This research was conducted while acting as consultant to ORI Inc. and reported on separately.

REFERENCE

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Research, Code 012, Naval Postgraduate School, Monterey, CA 93940</td>
<td>1</td>
</tr>
<tr>
<td>Defense Documentation Center, Cameron Station, Alexandria, VA 22314</td>
<td>2</td>
</tr>
<tr>
<td>Library, Code 0212, Naval Postgraduate School, Monterey, CA 93940</td>
<td>2</td>
</tr>
<tr>
<td>Commanding Officer, Air Test and Evaluation Squadron 1 (VX-1), Patuxent, MD</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer, Submarine Development Group Two, Groton, CT 06340</td>
<td>1</td>
</tr>
<tr>
<td>Director, Strategic Systems Project Office, Arlington, VA 20376</td>
<td>1</td>
</tr>
<tr>
<td>Naval Air Development Center, Code 2022, Johnsville, PA 18974</td>
<td>1</td>
</tr>
<tr>
<td>Center for Naval Analysis, Arlington, VA 22209</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Laboratory, Dahlgren, VA 22448</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Center, China Lake, CA 93555</td>
<td>1</td>
</tr>
<tr>
<td>Naval Surface Weapons Center, Silver Spring, MD 20910</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory, Washington, DC 20390</td>
<td>1</td>
</tr>
</tbody>
</table>
David Taylor Naval Ship Research & Development Center
Bethesda, Maryland 20034

Naval Ocean Systems Center
San Diego, California 92132

Naval Intelligence Support Center
4301 Suitland Road
Washington, D.C. 20390

Naval Electronics Systems Command
2511 Jefferson Davis Highway
Arlington, Virginia 20360

Naval Underwater Systems Center
Code SA33
New London, Connecticut 06320

Naval Ship Engineering Center
Hyattsville, Maryland 20782

Naval Coastal Systems Laboratory
Panama City, Florida 32401

Naval Air Systems Command
Code 370
Washington, D.C. 20361

Naval Sea Systems Command
Code 03424
Washington, D.C. 20362

Naval Underwater Systems Center
Newport, Rhode Island 02840

Naval Ordnance Station
Indian Head, Maryland 20640

Naval Surface Weapons Center
Dahlgren, Virginia 22448

Anti-Submarine Warfare Systems Project Office
Code ASW-137
Department of the Navy
Washington, D.C. 20360

Office of Naval Research
Code ONR-230
800 North Quincy Street
Arlington, Virginia 22217
Office of Naval Research
Code ONR-434
800 North Quincy Street
Arlington, VA 22217

Daniel H. Wagner, Associates
Station Square One
Paoli, PA 19301

Tetra Tech, Inc.
1911 Fort Meyer Dr.
Suite 601
Arlington, VA 22209

Systems Planning and Analysis
1600 Wilson Blvd.
Suite 700
Arlington, VA 22209

ORI, Inc.
1400 Spring St.
Silver Spring, MD 20910

Naval Postgraduate School
Monterey, Ca. 93940
Attn: R. N. Forrest, Code 55Fo
A. R. Washburn, Code 55Ws
R. J. Stampfel, Code 55
Library, Code 55

No. of Copies
1
1
1
10
1
1