INDIVIDUAL COMBATANT’S WEAPONS FIRING ALGORITHM
PHASE I OPTION

by
Amy E. Henninger

Soar Technology, Inc.
Orlando, FL 32817

April 2010

Final Report
October 2003 – November 2003

Approved for public release; distribution is unlimited.

Prepared for
U.S. Army Natick Soldier Research, Development and Engineering Center
Natick, Massachusetts 01760-5020
DISCLAIMERS

The findings contained in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

DESTRUCTION NOTICE

For Classified Documents:

Follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For Unclassified/Limited Distribution Documents:

Destroy by any method that prevents disclosure of contents or reconstruction of the document.
INDIVIDUAL COMBATANT’S WEAPONS FIRING ALGORITHM – PHASE I OPTION

Amy E. Henninger

Soar Technology, Inc.
3361 Rouse Road, Suite 175
Orlando, FL 32817

U.S. Army Natick Soldier Research, Development and Engineering Center
ATTN: RDNS-TSM (T. Gilroy)
Kansas Street, Natick, MA 01760-5020

Report developed under Small Business Innovation Research contract. Based on findings in Phase I, this effort developed a prototype data acquisition tool that can be used to collect large amounts of data over the WWW. In testing this tool, we acquired more data for the ICWFA that includes fuzzy estimates of factors influencing the target selection prioritization scheme, aim point, mode of fire, and estimates on Phit/Pmiss for a single SME. Also undertaken in this phase of the study was the development of a movie/concept demonstration to be distributed to other government agencies so that we can begin efforts in enhancing commercialization of product. Target markets will include both the analysis and training communities.
TABLE OF CONTENTS

LIST OF FIGURES... iv

LIST OF ACRONYMS AND ABBREVIATIONS... v

1 INTRODUCTION AND OVERVIEW .. 1

2 ENHANCEMENT OF PAST WORK - ALGORITHM EXTENSION .. 1
 2.1 MOUT TARGET SELECTION ALGORITHM ... 1
 2.2 CONSIDERATION OF HUMAN SCIENCE/MODELING EFFORTS... 2
 2.2.1 Review of Report: Squad Synthetic Environment Study (May, 2002) ... 2
 2.2.2 Review of Report: McKenna MOUT Study (September, 2002) .. 2

3 PREPARATION FOR FUTURE WORK .. 2
 3.1 KNOWLEDGE ACQUISITION TOOL ... 2
 3.2 SME ARRANGEMENTS AND FUTURE DATA COLLECTION EFFORTS... 2
 3.3 DEMONSTRATION MOVIE TO DEVELOP PARTNERSHIPS IN EFFORT .. 4

4 CONCLUSIONS AND SUMMARY .. 4

REFERENCES .. 5

APPENDIX A: SME FUZZY ESTIMATES ON FACTORS AND ESTIMATES ON PHIT/PMISS 6

APPENDIX B: FITKAT USER MANUAL .. 34

APPENDIX C: FITKAT SOURCE CODE ... 44

UNCLASSIFIED
LIST OF FIGURES

Figure 1. Relationships of WFA Factors...1
Figure 2. Engagement Skills Trainer 2000...3
LIST OF ACRONYMS and ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR</td>
<td>After Action Review</td>
</tr>
<tr>
<td>CGF</td>
<td>Computer Generated Force</td>
</tr>
<tr>
<td>HBR</td>
<td>Human Behavior Representation</td>
</tr>
<tr>
<td>IC</td>
<td>Individual Combatant</td>
</tr>
<tr>
<td>ICT</td>
<td>Institute for Creative Technologies</td>
</tr>
<tr>
<td>ICWFA</td>
<td>Individual Combatant Weapon Firing Algorithm</td>
</tr>
<tr>
<td>IOBC</td>
<td>Infantry Officer Basic Course</td>
</tr>
<tr>
<td>KA</td>
<td>Knowledge Acquisition</td>
</tr>
<tr>
<td>MOUT</td>
<td>Military Operations in Urban Terrain</td>
</tr>
<tr>
<td>PEO</td>
<td>Program Executive Office</td>
</tr>
<tr>
<td>RDECOM</td>
<td>Research, Development, and Engineering Command</td>
</tr>
<tr>
<td>RDT</td>
<td>Rapid Decision Trainer</td>
</tr>
<tr>
<td>RHS</td>
<td>Right Hand Side</td>
</tr>
<tr>
<td>ROE</td>
<td>Rules of Engagement</td>
</tr>
<tr>
<td>SAF</td>
<td>Semi-Automated Forces</td>
</tr>
<tr>
<td>SME</td>
<td>Subject Matter Expert</td>
</tr>
<tr>
<td>SOF</td>
<td>Special Operations Forces</td>
</tr>
<tr>
<td>SSCOM</td>
<td>Soldiers System Command</td>
</tr>
<tr>
<td>STRI</td>
<td>Simulation Training and Instrumentation</td>
</tr>
<tr>
<td>STTC</td>
<td>Simulation and Training Technology Center</td>
</tr>
<tr>
<td>WFA</td>
<td>Weapon Firing Algorithm</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Research Objective:
Report developed under a Small Business Innovation Research Program 2000.2 contract for topic A01.2-203. Based on findings in Phase I, this effort developed a prototype data acquisition tool that can be used to collect large amounts of data over the WWW. In testing this tool, we acquired more data for the ICWFA that includes fuzzy estimates of factors influencing the target selection prioritization scheme, aim point, mode of fire, and estimates on Phit/Pmiss for a single SME. Also undertaken in this phase of the study was the development of a movie/concept demonstration to be distributed to other government agencies so that we can begin efforts in enhancing commercialization of product. Target markets will include both the analysis and training communities.

Work Accomplished:
- Collected data on fuzzy estimates of factors identified in Phase I, aim points, mode of fire, and collected estimates on Pmiss/Phit based on those factors.
- Developed prototype data acquisition tool that can be used for web-based data collection effort.
- Developed concept demonstration to be used in commercialization efforts.
- Developed contacts for equipment and SMEs needed in future on-sight data collection efforts at USMA, Ft. Bragg, and RDECOM-STTC.

Conclusions:
The majority of work in this phase of project was allocated to the development of data acquisition system. While the immediate benefits of this tool are somewhat unrealized, we believe the investment will poise us to both collect and analyze data more efficiently in the future. Initial efforts to test the system have proven that it’s easier for SMEs to work with and provides us data in format that facilitates analysis. Further, as this tool is targeted for use over the WWW, we believe it will provide us with a wealth of data that can be used to support ICWFA.
1 Introduction and Overview
Essentially, our work performed in Option Phase of project focused on extending algorithm developed previously and on preparing for future data collection efforts. As such, this document is partitioned accordingly, where the next section, Section 2, presents the enhancement of the previously developed algorithm and then the following section, Section 3, presents efforts undertaken to prepare for future data collection efforts.

2 Enhancement of Past Work - Algorithm Extension

2.1 MOUT Target Selection Algorithm
The algorithm developed in Phase I focused mainly on target selection. That is, given some combination of factors, this algorithm presented priority scheme generalized over a number of subject matter experts (SMEs). As evidenced in Figure 1, however, a number of other factors are important in an individual combatant weapons firing algorithm (ICWFA). Information lacking in that initial algorithm but partially available in previously collected data include: percentages associated with dissimilar prioritization schemes, firing mode, aim points, and estimates of $P_{hit}/P_{kill}/P_{miss}$.

Data not available from initial effort was collected and may be seen in Appendix A. Appendix A is an output file from a prototype data acquisition tool we have developed named FITKAT. This tool is detailed further in Section 3.0. These data must still be cleanly integrated into the existing algorithm. Once finished, this will provide fuzzy estimates of factors of target threat and a point estimate of SME’s expectation of the probability of hitting the target given that set of factors.
2.2 Consideration of Human Science/Modeling Efforts

2.2.1 Review of Report: Squad Synthetic Environment Study (May, 2002)
We reviewed title report to see how it could be used in the ICWFA. While investigation collected a variety of data on a number of applicable scenarios involving SMEs interacting in a virtual environment, the data were presented in aggregate form and thus only minimally useful to our effort. For example, the engagement times reported include time to detect target, identify target, and shoot target. In algorithm being developed here, perceptual events (e.g., detection and identification) are beyond the scope of the effort. Of note, however, are data collected on aiming techniques and aim point, which complement the ICWFA. Also of note is the point made on future plans to statistically compare data in this report with data collected in the follow-on McKenna MOUT Study (see Section 2.2.2) to determine whether data collected in simulated environments can adequately represent data collected in live training exercises. The results of this comparison are of interest, as use of virtual environment to facilitate data collection is being considered for development of parts of the ICWFA.

2.2.2 Review of Report: McKenna MOUT Study (September, 2002)
We reviewed title report to see how it could be used in the ICWFA. While investigation collected a variety of data on a number of applicable scenarios, the data were presented in aggregate form and thus only minimally useful to our effort. For example, the engagement times reported include time to detect target, identify target, and shoot target. In algorithm being developed here, perceptual events (e.g., detection and identification) are beyond the scope of the effort. Of note, however, are data collected on aiming techniques and aim point, which complement the ICWFA. Also of note is the point made on future plans to statistically compare data in this report with data collected in the Squad Synthetic Environment Study (see Section 2.2.1) to determine whether data collected in simulated environments can adequately represent data collected in live training exercises. The results of this comparison are of interest, as a similar approach is being proposed for development of parts of the ICWFA.

3 Preparation for Future Work

3.1 Knowledge Acquisition Tool
By and large, the biggest part of our work has focused on the development of a Knowledge Acquisition Tool we can use to automate the knowledge acquisition process. Initial prototype of this tool is called First Target Knowledge Acquisition Tool (FiTKAT) and is developed around the target selection task. However, with bulk of work produced in prototype effort, the tool can be generalized to accommodate different types of data acquisition needs (e.g., fighting positions, Team Leader target assignments, use of suppressive fire, etc).

The user manual for this tool can be seen in Appendix B and the source code is available in Appendix C. These files are both provided electronically as well, and the latter is in executable form for any machine with Java interpreter installed. Because this tool is implemented in Java, our future plans include enabling access to it over the World Wide Web (WWW). Our vision is to be able to collect data over the internet from Soldiers and Marines who are currently deployed.

3.2 SME Arrangements and Future Data Collection Efforts
In preparation for Phase II, a number of contacts who could assist with data collection devices and/or acquiring SMEs were investigated. The most promising contacts include:
• COL. Charles Stanley and CAPT Carl Jacquet of the Department of Military Instruction (DMI) at United States Military Academy (USMA), West Point. COL. Stanley and CAPT. Jacquet assisted in Phase I, by hosting us and providing SMEs for data collection efforts. Upon learning of our efforts to continue the project and collect additional data, COL. Stanley graciously invited us to return to DMI, USMA for further work. He added that his department has recently acquired a number of NCOs returning from Afghanistan and Iraq. We anticipate this to be a strong, reliable source of data for us.

• LTC. Rick Matthews (U.S. Army, Ret), now employed at PEO STRI and LTC. Joseph Giunta, PM for Ground Systems at PEO STRI have offered their assistance in securing equipment and SMEs at Ft. Bragg for use in our data collection efforts. Specifically, they have contacts that can help us to use the Ft. Bragg Simulation Lab’s Engagement Skills Trainer 2000 (EST 2000) and get SMEs (both from Special Forces and from 82nd Airborne) to work with at Ft. Bragg. The EST 2000 (see Figure 2) is used to simulate weapons training events which leads to live-fire individual/crew weapon qualifications. It is used primarily as a unit/institutional, indoor, multipurpose, multilane, small arms, crew served and individual anti-tank training simulator. And, it provides initial and sustainment marksmanship training, static unit collective gunnery and tactical training, and Shoot/Don’t Shoot training. It includes MOUT scenarios. Additionally, the

![Image](image)

Figure 2. Engagement Skills Trainer 2000

Research Development and Engineering Command (RDECOM) Simulation and Training Technology Center (STTC) in Orlando currently has an EST 2000 for display. Thus, we can likely prepare for data collection locally in Orlando, and then only deploy for the actual data collection effort itself.

• Mr. Bill Pike of RDECOM-STTC is overseeing the development of a PC-based tactical decision trainer for newly commissioned lieutenants in the US Army Infantry School at Ft. Benning, GA. This low-cost, PC-based, rapid decision trainer, provides “virtual live-fire” training opportunity for all IOBC students to participate in a key leadership role as squad or platoon leader. Scenarios allow students to demonstrate their tactical knowledge by requiring them to make decisions in the virtual simulation that are similar to those required during a live-fire exercise. Further, the trainer allows single-player or multi-player participation. The project is creating basic scenarios for each range (Ware and Griswold) replicating the live-fire exercises currently being performed at IOBC and it tracks and evaluates the decisions made by the students as they participate in the virtual training event.

This document reports research undertaken at the U.S. Army Natick Soldier Research, Development and Engineering Center, Natick, MA, and has been assigned No. NATICK/TR-10/008 in a series of reports approved for publication.
References

Appendix A: SME Fuzzy Estimates on Factors and Estimates on \(\text{Phit/Pmiss} \)
Name: Rick Matthews
Rank: Officer (MAJ)

1: 43 or higher
2: Over 20
3: Platoon Leader
4: 2-5 years ago
5: No Response
6: 3-9
7: 100%
8: Situational Awareness
9: More than 6 years

| Target | Exposure | Visibility | Distance | Posture | Firing Status | h_xmin | h_xmax | h_ymin | h_ymax | t_xmin | t_xmax | t_ymin | t_ymax | l_xmin | l_xmax | l_ymin | l_ymax |
|--------|----------|------------|----------|---------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | 2 | 3 | 2 | 1 | 3 | 172 | 181 | 278 | 290 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 3 | 1 | 3 | 2 | 2 | 223 | 230 | 281 | 292 | 211 | 227 | 288 | 311 | 211 | 227 | 311 | 343 |
| 3 | 3 | 1 | 3 | 2 | 2 | 0 | 0 | 0 | 0 | 482 | 487 | 280 | 305 | 479 | 486 | 314 | 333 |

SME Target Selection Results

TargetSelected: none
Coordinates of Shot: 0 0
AimPoint: miss

After-Action Review

M4Mode: Double Tap
p_hit: 100
TARGET EXPOSURE VISIBILITY DISTANCE POSTURE FIRING STATUS h_xmin h_xmax h_ymin h ymax t_xmin t xmax t ymin t ymax l_xmin l xmax
--
--

1 2 3 2 1 3 203 217 342 363
195 231 358 422 195 223 418 502
2 3 1 3 2 2 654 657 363 370
652 660 374 406 0 0 0 0
--
--

SME TARGET SELECTION RESULTS

TargetSelected: none
Coordinates of Shot: 0 0
AimPoint: miss

AFTER-ACTION REVIEW

M4Mode:
Double Tap
p_hit:
100
<table>
<thead>
<tr>
<th>Target</th>
<th>Exposure</th>
<th>Visibility</th>
<th>Distance Posture</th>
<th>Firing Status</th>
<th>h_xmin</th>
<th>h_xmax</th>
<th>h_ymin</th>
<th>hymax</th>
<th>t_xmin</th>
<th>t_xmax</th>
<th>t_ymin</th>
<th>t_ymax</th>
<th>l_xmin</th>
<th>l_xmax</th>
<th>l_ymin</th>
<th>l_ymax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>313</td>
<td>325</td>
<td>293</td>
<td>308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>308</td>
<td>334</td>
<td>307</td>
<td>332</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>408</td>
<td>415</td>
<td>304</td>
<td>313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>406</td>
<td>418</td>
<td>312</td>
<td>331</td>
<td>410</td>
<td>418</td>
<td>330</td>
<td>333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>579</td>
<td>603</td>
<td>233</td>
<td>262</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>573</td>
<td>620</td>
<td>257</td>
<td>354</td>
<td>579</td>
<td>617</td>
<td>352</td>
<td>474</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SME Target Selection Results

TargetSelected: none
Coordinates of Shot: 0 0
AimPoint: miss

After-Action Review

M4Mode:
Double Tap
p_hit:
100
SME Target Selection Results

TargetSelected: none
Coordinates of Shot: 109 328
AimPoint: miss

After-Action Review

M4Mode:
Double Tap

p_hit:
100
Target Exposure Visibility Distance Posture FiringStatus h_xmin h_ymin h_xmax h_ymin t_xmin t_xmax t_ymin t_ymax l_xmin l_xmax l_ymin l_ymax
--
1 2 3 2 1 3 277 284 323 335 272 293 334 351 0 0 0 0
2 3 1 3 2 5 34 566 371 381 574 537 374 379 50 0 0 0
3 3 1 3 2 2 620 628 324 335 617 638 334 370 619 634 369 415
--

SME Target Selection Results

TargetSelected: 1
Coordinates of Shot: 280 336
AimPoint: torso

After-Action Review

M4Mode:
Double Tap
p_hit: 80
<table>
<thead>
<tr>
<th>Target</th>
<th>Exposure</th>
<th>Visibility</th>
<th>Distance</th>
<th>Posture</th>
<th>FiringStatus</th>
<th>h_xmin</th>
<th>h_xmax</th>
<th>h_ymin</th>
<th>h_ymax</th>
<th>t_xmin</th>
<th>t_xmax</th>
<th>t_ymin</th>
<th>t_ymax</th>
<th>l_xmin</th>
<th>l_xmax</th>
<th>l_ymin</th>
<th>l_ymax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>129</td>
<td>141</td>
<td>428</td>
<td>441</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>151</td>
<td>437</td>
<td>452</td>
<td>136</td>
<td>158</td>
<td>460</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>234</td>
<td>253</td>
<td>383</td>
<td>401</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SME Target Selection Results

TargetSelected: 1
Coordinates of Shot: 137 436
AimPoint: head

After-Action Review

M4Mode: Single Shot
p_hit: 50
FILENAMe: group1_7.jpg

**
Target **Exposure** **Visibility** **Distance** **Posture** **FiringStatus** **h_xmin**
h_xmax **h_ymin** **h_ymax** **t_xmin** **t_xmax** **t_ymin** **t_ymax** **l_xmin** **l_xmax**
**

```
\begin{tabular}{llllllllllll}
1 & 2 & 3 & 2 & 1 & 3 & 291 & 300 & 263 & 275 \\
2 & 3 & 1 & 3 & 2 & 2 & 629 & 640 & 259 & 268 \\
\end{tabular}
```


SME Target Selection Results

```
\begin{tabular}{llll}
TargetSelected: & 2 & \\
Coordinates of Shot: & 635 272 & \\
AimPoint: & torso & \\
\end{tabular}
```

After-Action Review

```
\begin{tabular}{llll}
M4Mode: & \\
Three-Round Burst & \\
p_hit: & 50 & \\
\end{tabular}
```

UNCLASSIFIED
Target Exposure Visibility Distance Posture FiringStatus hxmin
hxmax h ymin h ymax t xmin t xmax t ymin t ymax l xmin l xmax
--
--

1 2 3 2 1 3 285 293 326 331
280 331 297 345 285 298 355 377
2 3 1 3 2 2 615 624 324 332
616 630 349 370
--
--

SME Target Selection Results

TargetSelected: 1
Coordinates of Shot: 289 330
AimPoint: head

After-Action Review

M4Mode:
Three-Round Burst
p hit:
50
Target Exposure Visibility Distance Posture FiringStatus h_xmin h_xmax h_ymin h_ymax t_xmin t_xmax t_ymin t_ymax l_xmin l_xmax
--
1 2 3 2 1 3 343 362 194 219
350 389 214 295 358 389 291 387
2 3 1 3 2 2 427 435 245 254
429 448 254 285 434 448 284 329
3 3 1 3 2 2 600 615 215 234
599 630 233 292 599 620 291 367
--

SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 433 253
AimPoint: head

After-Action Review

M4Mode: Double Tap
p_hit: 30
Target Exposure Visibility Distance Posture FiringStatus h_xmin h_xmax h_ymin h_ymax t_xmin t_xmax t_ymin t_ymax l_xmin l_xmax l_ymin l_ymax

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>446</td>
<td>454</td>
<td>210</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>539</td>
<td>551</td>
<td>181</td>
</tr>
</tbody>
</table>

SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 543 208
AimPoint: torso

After-Action Review

M4Mode:
Double Tap
p_hit:
80

UNCLASSIFIED
FILENAME: group2_3.jpg

Target Exposure Visibility Distance Posture FiringStatus h_xmin h_xmax h_ymin h_ymax t_xmin t_xmax t_ymin t_ymax l_xmin l_xmax l_ymin l ymax
--
--

1 2 3 2 1 3 384 388 199 206
382 398 206 233 0 0 0
2 3 1 3 2 2 467 479 170 187
478 494 186 233 472 491 231 293
--
--

SME Target Selection Results

TargetSelected: 1
Coordinates of Shot: 384 211
AimPoint: torso

After-Action Review

M4Mode:
Three-Round Burst
p_hit:
50
<table>
<thead>
<tr>
<th>Target</th>
<th>Exposure</th>
<th>Visibility</th>
<th>Distance</th>
<th>Posture</th>
<th>FiringStatus</th>
<th>h_xmin</th>
<th>h_xmax</th>
<th>h_ymin</th>
<th>h_ymax</th>
<th>t_xmin</th>
<th>t_xmax</th>
<th>t_ymin</th>
<th>t_ymax</th>
<th>l_xmin</th>
<th>l_xmax</th>
<th>l_ymin</th>
<th>l_ymax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 2 1</td>
<td>3 569</td>
<td>582</td>
<td>259</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>2 3</td>
<td>618</td>
<td>652</td>
<td>254</td>
<td>285</td>
<td>619</td>
<td>649</td>
<td>282</td>
<td>311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3</td>
<td>601</td>
<td>620</td>
<td>111</td>
<td>130</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SME Target Selection Results

TargetSelected: 1
Coordinates of Shot: 576 263
AimPoint: head

After-Action Review

M4Mode: Double Tap
p_hit: 50
FILENAME: group3_2.jpg

Target Exposure Visibility Distance Posture FiringStatus h_xmin h_xmax h_ymin h_ymax t_xmin t_xmax t_ymin t_ymax l_xmin l_xmax l_ymin l_ymax
--
--

1 2 3 2 1 3 445 455 256 265
442 462 263 285 441 458 280 312
2 3 1 3 2 2 505 521 257 272
499 525 272 300 492 529 296 347
3 3 1 3 2 2 0 0 0 0
538 555 116 132 0 0 0 0
--
--

SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 512 261
AimPoint: head

After-Action Review

M4Mode:
Double Tap
p_hit:
50
SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 522 331
AimPoint: torso

After-Action Review

M4Mode:
Double Tap
p_hit:
100
SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 531 293
AimPoint: head

After-Action Review

M4Mode:
Double Tap
p_hit:
100
<table>
<thead>
<tr>
<th>Target</th>
<th>Exposure</th>
<th>Visibility</th>
<th>Distance</th>
<th>Posture</th>
<th>Firing Status</th>
<th>h_xmin</th>
<th>h_xmax</th>
<th>h_ymin</th>
<th>h_ymax</th>
<th>t_xmin</th>
<th>t_xmax</th>
<th>t_ymin</th>
<th>t_ymax</th>
<th>l_xmin</th>
<th>l_xmax</th>
<th>l_ymin</th>
<th>l_ymax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 2 1</td>
<td>3 462</td>
<td>472</td>
<td>419</td>
<td>430</td>
<td></td>
<td>455</td>
<td>476</td>
<td>430</td>
<td>475</td>
<td>454</td>
<td>478</td>
<td>461</td>
<td>523</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3 1 3 2</td>
<td>2 501</td>
<td>513</td>
<td>412</td>
<td>428</td>
<td></td>
<td>500</td>
<td>521</td>
<td>424</td>
<td>469</td>
<td>500</td>
<td>522</td>
<td>459</td>
<td>529</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 505 422
AimPoint: head

After-Action Review

M4Mode:
Double Tap
p_hit:
100
Target Exposure Visibility Distance Posture FiringStatus h_xmin h_ymin h_xmax h_ymax t_xmin t_ymin t_xmax t_ymax l_xmin l_ymin l_xmax l_ymax
--
--

1 2 3 2 1 3 185 194 304 313
180 201 310 335 180 202 332 367
2 3 1 3 2 2 286 293 306 312
284 296 312 324 285 296 319 336
3 3 1 3 2 2 641 652 310 334
638 652 310 334 639 654 332 362
--

SME Target Selection Results

TargetSelected: 1
Coordinates of Shot: 192 320
AimPoint: torso

After-Action Review

M4Mode:
Three-Round Burst
p_hit: 70

UNCLASSIFIED
SME Target Selection Results

TargetSelected: 1
Coordinates of Shot: 174 326
AimPoint: torso

After-Action Review

M4Mode:
Three-Round Burst
p_hit: 70
<table>
<thead>
<tr>
<th>Target</th>
<th>Exposure</th>
<th>Visibility</th>
<th>Distance</th>
<th>Posture</th>
<th>FiringStatus</th>
<th>h_xmin</th>
<th>h_xmax</th>
<th>h_ymin</th>
<th>h_ymax</th>
<th>t_xmin</th>
<th>t_xmax</th>
<th>t_ymin</th>
<th>t_ymax</th>
<th>l_xmin</th>
<th>l_xmax</th>
<th>l_ymin</th>
<th>l_ymax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>2 3 1</td>
<td>3 2 1</td>
<td>3 229</td>
<td>240</td>
<td>288</td>
<td>297</td>
<td>233</td>
<td>263</td>
<td>292</td>
<td>310</td>
<td>240</td>
<td>268</td>
<td>303</td>
<td>329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3 3</td>
<td>1 3 2</td>
<td>2 382</td>
<td>3 94</td>
<td>271</td>
<td>283</td>
<td></td>
<td>381</td>
<td>399</td>
<td>279</td>
<td>304</td>
<td>384</td>
<td>398</td>
<td>296</td>
<td>329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 3</td>
<td>1 3 2</td>
<td>2 0 0 0</td>
<td>0 0</td>
<td>0 0</td>
<td></td>
<td></td>
<td>523</td>
<td>536</td>
<td>268</td>
<td>282</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 3 3</td>
<td>1 3 2</td>
<td>2 577</td>
<td>5 86</td>
<td>294</td>
<td>305</td>
<td></td>
<td>572</td>
<td>594</td>
<td>303</td>
<td>325</td>
<td>576</td>
<td>593</td>
<td>322</td>
<td>339</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SME Target Selection Results

TargetSelected: none
Coordinates of Shot: 0 0
AimPoint: miss

After-Action Review

M4Mode:
Three-Round Burst
p_hit:
70
<table>
<thead>
<tr>
<th>Target</th>
<th>Exposure</th>
<th>Visibility</th>
<th>Distance</th>
<th>Posture</th>
<th>FiringStatus</th>
<th>h_xmin</th>
<th>h_xmax</th>
<th>h_ymin</th>
<th>h_ymax</th>
<th>t_xmin</th>
<th>t_xmax</th>
<th>t_ymin</th>
<th>t_ymax</th>
<th>l_xmin</th>
<th>l_xmax</th>
<th>l_ymin</th>
<th>l_ymax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>3 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 416</td>
<td>427</td>
<td>314</td>
<td>326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 3</td>
<td>3 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>498</td>
<td>512</td>
<td>310</td>
<td>334</td>
<td>504</td>
<td>515</td>
<td>331</td>
<td>363</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 503 308
AimPoint: head

After-Action Review

M4Mode:
Three-Round Burst
p_hit: 70

UNCLASSIFIED
Target Exposure Visibility Distance Posture FiringStatus h_xmin h_xmax h_ymin h_ymax t_xmin t_xmax t_ymin t_ymax l_xmin l_xmax l_ymin l_ymax
--
--

1 2 3 2 1 3 245 252 278 286 242 258 283 307 245 258 302 334
2 3 1 3 2 2 583 592 413 422 578 599 419 446 582 603 445 486
--
--

SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 591 424
AimPoint: torso

After-Action Review

M4Mode:
Three-Round Burst
p_hit:
80
| Target | Exposure | Visibility | Distance | Posture | FiringStatus | h_xmin | h_xmax | h_ymin | h_ymax | t_xmin | t_xmax | t_ymin | t_ymax | l_xmin | l_xmax | l_ymin | l_ymax |
|--------|----------|-------------|----------|---------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | 2 | 3 | 2 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 3 | 1 | 3 | 2 | 1 | 466 | 487 | 396 | 417 | 469 | 516 | 410 | 449 | 468 | 514 | 443 | 498 |

SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 477 415
AimPoint: head

After-Action Review

M4Mode:
Double Tap
p_hit:
100
SME Target Selection Results

TargetSelected: 2
Coordinates of Shot: 577 320
AimPoint: torso

After-Action Review

M4Mode:
Double Tap
p_hit: 100

SME Target Selection Results

TargetSelected: 3
Coordinates of Shot: 614 470
AimPoint: torso

After-Action Review

M4Mode: Double Tap
p_hit: 100
| Target | Exposure | Visibility | Distance | Posture | FiringStatus | h_xmin | h_xmax | h_ymin | h_ymax | t_xmin | t_xmax | t_ymin | t_ymax | l_xmin | l_xmax | l_ymin | l_ymax |
|--------|----------|------------|----------|---------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | 3 | 1 | 3 | 2 | 2 | 48 | 71 | 323 | 345 | 41 | 89 | 340 | 414 | 48 | 87 | 410 | 484 |
| 2 | 3 | 1 | 3 | 2 | 2 | 237 | 253 | 274 | 287 | 228 | 257 | 287 | 305 | 0 | 0 | 0 | 0 |
| 3 | 3 | 1 | 3 | 2 | 2 | 782 | 811 | 320 | 350 | 760 | 834 | 339 | 449 | 752 | 813 | 426 | 567 |

SME Target Selection Results

TargetSelected: none
Coordinates of Shot: 0 0
AimPoint: miss

After-Action Review

M4Mode:
Double Tap
p_hit:
100
<table>
<thead>
<tr>
<th>Target</th>
<th>Exposure</th>
<th>Visibility</th>
<th>Distance</th>
<th>Posture</th>
<th>FiringStatus</th>
<th>h_xmin</th>
<th>h_xmax</th>
<th>h_ymin</th>
<th>h_ymax</th>
<th>l_xmin</th>
<th>l_xmax</th>
<th>l_ymin</th>
<th>l_ymax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 2 1</td>
<td>0 0 0 0 0 0 0 0 0 2 3</td>
<td>3 208 224 301 312</td>
<td>265 286 298 334 268 286 328 365</td>
<td></td>
</tr>
</tbody>
</table>

SME Target Selection Results

TargetSelected: none
Coordinates of Shot: 50 342
AimPoint: miss

After-Action Review

M4Mode:
Three-Round Burst
p_hit: 80
null
Appendix B: FiTKAT User Manual
Section 1 – Installing and Running FiTKAT

1. Ensure that you are running an OS that has a Java run-time environment installed. You can check to see if this is the case by typing “java –version” at a terminal or DOS command prompt.

2. If you wish to run this tool from your hard drive (and not from the included CD-ROM), ensure that you extract the following files to an empty directory. Each of these files are included in the self-extracting zip file fitkat.exe
 - start.bat
 - MainApp.class
 - UserInfoWindow.class
 - TargetWindow.class
 - AfterActionReviewWindow.class
 - image_params.dat
 - all .jpg files referred to within image_params.dat (group1_1.jpg …)

3. Ensure that your desktop resolution is at least 1152x864 pixels to ensure FiTKAT can fully display each window

4. If you have edited the image_params.dat file (see Section 3), ensure that each image file listed exists in the /bin directory. Also, check the file to make sure each listing adheres to the correct format as shown in the provided image_params.dat file.

5. From the /bin directory of your CD-ROM, (or from the empty directory created on your hard drive) execute ‘start.bat’.
Section 2 – Working with FiTKAT

FiTKAT includes three knowledge-acquisition windows that accept user data: the questionnaire, drill section, and after-action review section. The SME can navigate through these windows using a standard 2-button mouse and keyboard.

Section 2.1 - SME Questionnaire

The opening window displayed by FiTKAT is a questionnaire that asks the SME basic questions about his military background. The SME is not required to provide answers to any of these questions; however, he is encouraged to submit a complete survey. To complete this questionnaire, navigate the mouse to the answer blanks for each question. For text answers, click in the white space provided and type in your response. For multiple-choice questions, simply click on the blank button indicating your answer. If a question permits multiple answers, your selections will display as check marks instead of filled-in circles. Use the scroll bar on the right-hand side of the window to navigate to the latter questions in the survey. When you are finished, click the ‘Submit’ button to proceed to the drill section of FiTKAT.

Figure B1 – The Questionnaire Window
Section 2.2 - Drill Section

For the drill section, FiTKAT will display a list of images in the order that they are provided in the image_params.dat file (see Section 3). When an image appears, use the left-mouse button to fire on the target that you would most likely fire upon first if presented the situation in real life. Be sure to click (only once) on the target at the precise point on his body where you would most likely fire. After you have made a selection, refrain from clicking until a new image has loaded into the drill window.

Figure B2 – The Drill Window
Section 2.3 – The After-Action Review Window

After FiTKAT has displayed each image, the After-Action Review window instantiates. Here, each image will be displayed a second time with a set of crosshairs indicating where the user has fired. Below the image is a set of questions designed to probe the SME for more information regarding his selection. Use the mouse and keyboard to fill in the appropriate responses. Feel free to leave questions blank if you wish. When you have completed your responses for the image displayed, click the ‘Submit’ button to proceed to the next image.

![Figure B3 – The After-Action Review Window](image-url)
Section 3 – The Console Window

During execution, a console window in which you executed `start.bat` will be displaying messages about the current run. If you encounter a problem while running FiTKAT, check this window to see if any error messages have printed. If an error has occurred during your run, the reason for that error will likely be displayed in this window.

In Figure B4, FiTKA has executed without the `image_params.dat` file. The program is able to execute the user survey, but when it begins loading images for the drill section it runs into the error above. The `TargetWindow::createFileStreams` text represents the class and method in which the error has occurred.

Figure B4 – The Console Window and an Example Error Message
Section 4 – Modifying Target Selection Images with *image_params.dat*

The *image_params.dat* file contains both a listing of each image to be displayed by FiTKAT along with the coordinates of each target depicted by those images. More specifically, the locations of the head, torso, and legs of target are each identified within *image_params.dat* as a 4-tuple that defines a coordinate ‘box’ around that region (see figure B5 below). These box coordinates are actually pixel positions within the image file. In figure B5, for instance, the coordinate \((t_{\text{xmin}}, t_{\text{ymin}})\) represents the top-left vertex of the blue torso box, whereas \((t_{\text{xmax}}, t_{\text{ymax}})\) represents the bottom-right vertex.

In addition to these positions, *image_params.dat* also contains fields for the visibility, distance, exposure, posture, and firing status of the target in relation to the environment in which he is seen. In the provided *image_params.dat*, each field takes on a value between 1 and 3 based on the degree to which each target portrays the trait.

The fields are an attempt to portray a complete description of each target’s threat within a given image. When the subject-matter expert selects a target, that selection can be mapped to the values of these fields in relation to those of the non-selected targets. As the FiTKAT program does not do any internal computations with these values, the values can be modified to span any desired numerical range or orientation.

To add an image to be displayed by FiTKAT during the drill exercise and AAR, simply add the filename and image information to *image_params.dat* using the exact format used in the provided file. Note that you can designate where in the sequence this image is displayed, as FiTKAT reads and presents each image in the exact order it is presented by *image_params.dat*.

Figure B5 – Defining the Body-Part Regions of a Target with 4-Tuple ‘Boxes’

\[
(t_{\text{xmin}}, t_{\text{ymin}}) \quad \text{head} \\
\text{torso} \quad (t_{\text{xmax}}, t_{\text{ymax}}) \\
\text{legs}
\]
Figure B6 – A Sample Slide from the Drill Section

Figure B7 – Defining the Targets and their Parameters
When adding an image, it is necessary to include the locations of each target along with the image name. To identify these positions using the FiTKAT tool, first add the image name as the first image to be displayed. Provide values for visibility, posture, etc. (for each target) and enter 0 for all coordinate values needed. Figure B7 is an example image_params.dat file with the parameters of image group1_3.jpg shown. Figure B6 is an illustration of this image with each of its three targets identified. In Figure B7, note that a value for the exposure, visibility, etc. is assigned to each of the three targets – for example, target 2 is assigned visibility = 3 (most visible) whereas target 3 is given visibility = 2.

After these values have been assigned for each target, execute FiTKAT and proceed to the image you have added. Right-click on the upper-left and lower-right boundaries of the boxes you wish to create for each region of your targets. Note that after each click, a set of coordinates will show up in the FiTKAT console window. The coordinates of the upper-left region will correspond to x_{min} and y_{min} for the appropriate region of the target you are defining, while the lower-right coordinates translate to its x_{max} and y_{max} values. These values can be plugged into the appropriate spaces within image_params.dat.

![4-tuple for head region of target 1](image_params.png)

Figure B8 – The 4-Tuple Boxes in image_params.dat

Section 5 – Retrieving Knowledge Obtained from FiTKAT

Each time the FiTKAT application is run, a text file is created and saved as *username*.txt (where *username* is the name provided by the SME in the questionnaire). At the beginning of this file are the responses that user submitted in the leading questionnaire. What follows is a copy of the image_params.dat file with added values containing the coordinates and body positions of the shot, along with the responses given to the after-action review for each image.
Figure B7 – "username*.txt
Appendix C: FiTKAT Source Code
MainApp.java

/*
 * Title: MainApp
 * Description: This is the FiTKAT main application. It
 * calls and sizes each window to be used
 * (UserInfoWindow, TargetWindow,
 * AfterActionReviewWindow)
 * Author: Soar Technology, Inc.
 * Version: 1.1
 * Date: 11.24.03
 */

import javax.swing.*;
import java.awt.event.*;

public class MainApp
{
 public static void main(String [] args)
 {
 // create the user info window and define size and orientation
 UserInfoWindow infoWindow = new UserInfoWindow("FiTKAT - User
 Info");
 infoWindow.setSize(900, 1050);
 infoWindow.setLocation(300, 50);
 infoWindow.setVisible(true);

 // hold until info window is closed
 while (infoWindow.isVisible()) {}

 // create the first target window
 TargetWindow targetWindow = new TargetWindow("FiTKAT - Drill
 Excercise", infoWindow.getIoFileName());
 targetWindow.addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });
 targetWindow.setVisible(true);

 // hold until window closed
 while (targetWindow.isVisible()){}

 // exit program if file error occured
 if (targetWindow.didRunCorrectly()== false)
 System.exit(0);

 // create the after action review window
 AfterActionReviewWindow aarWindow = new AfterActionReviewWindow
 ("FiTKAT - After Action Review", infoWindow.getIoFileName());
 aarWindow.addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });
 }
}
// hold until window closed
while (aarWindow.isVisible()) {}
// UserInfoWindow.java

/*
* Title: UserInfoWindow
* Description: This is the Window JFrame that contains the
* user survey. This Frame is responsible for
* displaying the survey and recording user
* responses by writing them to a pre-existing
* file containing the list and description
* of each image to be displayed.
* Copyright: Copyright (c) 2003
* Author: Soar Technology, Inc.
* Version: 1.1
* Date: 11.24.03
*/

import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.awt.event.*;

public class UserInfoWindow extends JFrame implements ActionListener,
ItemListener
{

 //JFrame stuff
 Container contentPane;
 UserInfoWindowPanel panel,column1panel,column2panel;

 // file names and streams
 FileWriter ioFileStream;
 static String imageInfoFileName = "image_params.dat";
 String ioFileName;

 // buttons, checkboxes and textfields
 JTextField userName;
 JTextField userRank;

 ButtonGroup question1answers;
 JRadioButton q1a, q1b, q1c, q1d, q1e;
 ButtonGroup question2answers;
 JRadioButton q2a, q2b, q2c, q2d, q2e;
 JCheckBox q3a, q3b, q3c, q3d, q3e, q3f, q3g, q3h, q3i, q3j;
 JTextField q3jText;
 ButtonGroup question4answers;
 JRadioButton q4a, q4b, q4c, q4d;
 ButtonGroup question5answers;
 JRadioButton q5a, q5b, q5c, q5d;
 ButtonGroup question6answers;
 JRadioButton q6a, q6b, q6c, q6d;
 ButtonGroup question8answers;
 JTextField q7Text;
 JRadioButton q8a, q8b, q8c, q8d;
 JTextField q8dText;
 ButtonGroup question9answers;
 JRadioButton q9a, q9b, q9c, q9d;

 JButton submitButton;

 //...
/* Method: UserInfoWindow
 Description: This is the Constructor for UserInfoWindow. It creates
 the frame along with
 the scrolling feature and it calls the function to display each question and
 answer field
*/
UserInfoWindow(String title)
{
 // call constructor for parent class
 super(title);

 // create frame and add content panel
 contentPane = getContentPane();
 panel = new UserInfoWindowPanel();
 contentPane.add(panel);

 // add scroll pane for frame
 JScrollPane jscrollpane = new JScrollPane(panel,
 JScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 contentPane.add(jscrollpane);

 // add question and answer fields to panel
 addFields();
}

/* Method: addFields
 Description: This method adds each question and answer field to the panel to be displayed.
*/
private void addFields()
{
 // create a layout for the questions
 panel.setLayout(new GridLayout(1,2));
 column1panel = new UserInfoWindowPanel();
 column1panel.setLayout(new GridLayout(30,0));
 column2panel = new UserInfoWindowPanel();
 column2panel.setLayout(new GridLayout(30,0));

 // Name and Rank fields
 UserInfoWindowPanel namepanel = new UserInfoWindowPanel();
 GridLayout nameRankLayout = new GridLayout(2,2);
 namepanel.setLayout(nameRankLayout);
 JLabel userNameLabel = new JLabel("Name");
 userName = new JTextField(10);
 namepanel.add(userNameLabel);
 namepanel.add(userName);
 UserInfoWindowPanel rankpanel = new UserInfoWindowPanel();
 rankpanel.setLayout(nameRankLayout);
 JLabel userRankLabel = new JLabel("Rank");
 userRank = new JTextField(10);
 rankpanel.add(userRankLabel);
 rankpanel.add(userRank);
column1panel.add(namepanel);
column1panel.add(rankpanel);

// question 1
JLabel question1 = new JLabel("1. How old are you?");
column1panel.add(question1);

question1answers = new ButtonGroup();
q1a = new JRadioButton("19-25");
q1a.setBackground(Color.white);
q1b = new JRadioButton("26-30");
q1b.setBackground(Color.white);
q1c = new JRadioButton("31-36");
q1c.setBackground(Color.white);
q1d = new JRadioButton("37-42");
q1d.setBackground(Color.white);
q1e = new JRadioButton("older than 42");
q1e.setBackground(Color.white);
// add each answer to buttongroup
question1answers.add(q1a);
question1answers.add(q1b);
question1answers.add(q1c);
question1answers.add(q1d);
question1answers.add(q1e);
// add item listener for each button in group
q1a.addItemListener(this);
q1b.addItemListener(this);
q1c.addItemListener(this);
q1d.addItemListener(this);
q1e.addItemListener(this);

column1panel.add(q1a);
column1panel.add(q1b);
column1panel.add(q1c);
column1panel.add(q1d);
column1panel.add(q1e);

// question 2
JLabel question2 = new JLabel("2. How many years have you served in the military?");
column1panel.add(question2);

question2answers = new ButtonGroup();
q2a = new JRadioButton("1-4");
q2a.setBackground(Color.white);
q2b = new JRadioButton("5-9");
q2b.setBackground(Color.white);
q2c = new JRadioButton("10-14");
q2c.setBackground(Color.white);
q2d = new JRadioButton("15-20");
q2d.setBackground(Color.white);
q2e = new JRadioButton("more than 20");
q2e.setBackground(Color.white);
question2answers.add(q2a);
question2answers.add(q2b);
question2answers.add(q2c);
question2answers.add(q2d);
question2answers.add(q2e);
q2a.addItemListener(this);
q2b.addItemListener(this);
q2c.addItemListener(this);
q2d.addItemListener(this);
q2e.addItemListener(this);

column1panel.add(q2a);
column1panel.add(q2b);
column1panel.add(q2c);
column1panel.add(q2d);
column1panel.add(q2e);

// question 3
JLabel question3 = new JLabel("3. What infantry positions/roles in unit have you held? (check all that apply)");
column1panel.add(question3);
q3a = new JCheckBox("Platoon Leader");
q3a.setBackground(Color.white);
q3b = new JCheckBox("Squad Leader");
q3b.setBackground(Color.white);
q3c = new JCheckBox("Fireteam Leader");
q3c.setBackground(Color.white);
q3d = new JCheckBox("Platoon Sargeant");
q3d.setBackground(Color.white);
q3e = new JCheckBox("Rifleman");
q3e.setBackground(Color.white);
q3f = new JCheckBox("Sniper");
q3f.setBackground(Color.white);
q3g = new JCheckBox("Machine Gunner");
q3g.setBackground(Color.white);
q3h = new JCheckBox("SAW Gunner");
q3h.setBackground(Color.white);
q3i = new JCheckBox("Grenadier");
q3i.setBackground(Color.white);
q3j = new JCheckBox("Other");
q3j.setBackground(Color.white);
q3jText = new JTextField(20);

q3a.addItemListener(this);
q3b.addItemListener(this);
q3c.addItemListener(this);
q3d.addItemListener(this);
q3e.addItemListener(this);
q3f.addItemListener(this);
q3g.addItemListener(this);
q3h.addItemListener(this);
q3i.addItemListener(this);
q3j.addItemListener(this);

column1panel.add(q3a);
column1panel.add(q3b);
column1panel.add(q3c);
column1panel.add(q3d);
column1panel.add(q3e);
column1panel.add(q3f);
column1panel.add(q3g);
column1panel.add(q3h);
column1panel.add(q3i);
column1panel.add(q3j);
UserInfoWindowPanel q3jpanel = new UserInfoWindowPanel();
q3jpanel.setLayout(new FlowLayout(FlowLayout.LEADING));
q3jpanel.add(q3j);
q3jpanel.add(q3jText);
column1panel.add(q3jpanel);

// question 4
JLabel question4 = new JLabel("4. When is the last time you participated in training or evaluation of");
column1panel.add(question4);

JLabel question4b = new JLabel("Infantry Battle Drills?");
column1panel.add(question4b);

question4answers = new ButtonGroup();
q4a = new JRadioButton("Never");
q4a.setBackground(Color.white);
q4b = new JRadioButton("Less than 2 years ago");
q4b.setBackground(Color.white);
q4c = new JRadioButton("2-5 years ago");
q4c.setBackground(Color.white);
q4d = new JRadioButton("More than 6 years ago");
q4d.setBackground(Color.white);
question4answers.add(q4a);
question4answers.add(q4b);
question4answers.add(q4c);
question4answers.add(q4d);
q4a.addItemListener(this);
q4b.addItemListener(this);
q4c.addItemListener(this);
q4d.addItemListener(this);
column1panel.add(q4a);
column1panel.add(q4b);
column1panel.add(q4c);
column1panel.add(q4d);

// question 5
JLabel question5 = new JLabel("5. When is the last time you participated in real-world execution of");
column2panel.add(question5);

JLabel question5b = new JLabel("Infantry Battle Drills?");
column2panel.add(question5b);

question5answers = new ButtonGroup();
q5a = new JRadioButton("Never");
q5a.setBackground(Color.white);
q5b = new JRadioButton("Less than 2 years ago");
q5b.setBackground(Color.white);
q5c = new JRadioButton("2-5 years ago");
q5c.setBackground(Color.white);
q5d = new JRadioButton("More than 6 years ago");
q5d.setBackground(Color.white);
question5answers.add(q4a);
question5answers.add(q4b);
question5answers.add(q4c);
question5answers.add(q4d);
q4a.addItemListener(this);
q4b.addItemListener(this);
q4c.addItemListener(this);
q4d.addItemListener(this);
q5c.addItemListener(this);
q5d.addItemListener(this);

column2panel.add(q5a);
column2panel.add(q5b);
column2panel.add(q5c);
column2panel.add(q5d);

// question 6
JLabel question6 = new JLabel("6. How many real fire fights have you been in?");
column2panel.add(question6);

question6answers = new ButtonGroup();
q6a = new JRadioButton("None");
q6a.setBackground(Color.white);
q6b = new JRadioButton("Less than 3");
q6b.setBackground(Color.white);
q6c = new JRadioButton("3-9");
q6c.setBackground(Color.white);
q6d = new JRadioButton("10 or more");
q6d.setBackground(Color.white);
question6answers.add(q6a);
question6answers.add(q6b);
question6answers.add(q6c);
question6answers.add(q6d);
q6a.addItemListener(this);
q6b.addItemListener(this);
q6c.addItemListener(this);
q6d.addItemListener(this);

column2panel.add(q6a);
column2panel.add(q6b);
column2panel.add(q6c);
column2panel.add(q6d);

// question 7
JLabel question7 = new JLabel("7. What percentage of those fights were successful? ");
q7Text = new JTextField(5);
q7Text.setText("%");
UserInfoWindowPanel q7panel = new UserInfoWindowPanel();
q7panel.setLayout(new FlowLayout(FlowLayout.LEADING));
q7panel.add(question7);
q7panel.add(q7Text);
column2panel.add(q7panel);

// question 8
JLabel question8 = new JLabel("8. What would you consider the most important aspect of executing ");
JLabel question8b = new JLabel(" Infantry Battle Drills?");
column2panel.add(question8);

column2panel.add(question8b);

question8answers = new ButtonGroup();
q8a = new JRadioButton("Quick Response");
q8a.setBackground(Color.white);
q8b = new JRadioButton("Teamwork");
q8b.setBackground(Color.white);
q8c = new JRadioButton("Situational Awareness");
q8c.setBackground(Color.white);
q8d = new JRadioButton("Other");
q8d.setBackground(Color.white);
q8dText = new JTextField(20);
question8answers.add(q8a);
question8answers.add(q8b);
question8answers.add(q8c);
question8answers.add(q8d);
q8a.addItemListener(this);
q8b.addItemListener(this);
q8c.addItemListener(this);
q8d.addItemListener(this);

column2panel.add(q8a);
column2panel.add(q8b);
column2panel.add(q8c);

UserInfoWindowPanel q8dpanel = new UserInfoWindowPanel();
q8dpanel.setLayout(new FlowLayout(FlowLayout.LEADING));
q8dpanel.add(q8d);
q8dpanel.add(q8dText);
column2panel.add(q8dpanel);

// question 9
JLabel question9 = new JLabel(
 "9. How many years of combat training have you received?");
(column2panel.add(question9));

question9answers = new ButtonGroup();
q9a = new JRadioButton("None");
q9a.setBackground(Color.white);
q9b = new JRadioButton("Less than 2 years");
q9b.setBackground(Color.white);
q9c = new JRadioButton("2-5 years");
q9c.setBackground(Color.white);
q9d = new JRadioButton("6 years or more");
q9d.setBackground(Color.white);
question9answers.add(q9a);
question9answers.add(q9b);
question9answers.add(q9c);
question9answers.add(q9d);
q9a.addItemListener(this);
q9b.addItemListener(this);
q9c.addItemListener(this);
q9d.addItemListener(this);

(column2panel.add(q9a));
(column2panel.add(q9b));
(column2panel.add(q9c));
(column2panel.add(q9d));

// submitButton
submitButton = new JButton("Submit");
submitButton.setBackground(Color.white);
submitButton.addActionListener(this);
column2panel.add(submitButton);
panel.add(column1panel);
panel.add(column2panel);
}

/* Method: writeData
Description: this is a function to write a given string to the file
 corresponding to the userDataFile buffer
*/
private void writeData(String data)
{
 try {
 ioFileStream.write(data);
 }
 catch (Exception E) {
 System.out.println("UserInfoWindow::writeData: ERROR - Can't write
to file");
 }
}

/* Method: getIoFileName
Description: this retrieves the fileName
*/
public String getIoFileName()
{
 return ioFileName;
}

/* Method: actionPerformed
Description: This function is required for a frame to implement
 ActionListener. It fires when the submit button is pressed and records
 all of the answers indicated at the time of submittal to the i/o file
*/
public void actionPerformed(ActionEvent e)
{
 /* when submit button is pressed, create a new file called and write
 the user survey answers to that file. Name the file *username*.txt */
 if (e.getSource() == submitButton) {
 try {
 if (userName.getText().length()==0) ioFileName = "anonymous.txt";
 else ioFileName = userName.getText() + ".txt";
 ioFileStream = new FileWriter(userName.getText() + ".txt");
 }
 catch (Exception E) {
 System.out.println("UserInfoWindow::actionPerformed: ERROR - Can't open output file");
 }
 // name and rank
 writeData("Name: ");
 writeData(userName.getText() + "\n");
 writeData("Rank: ");
 }
writeData(userRank.getText() + "\r\n");
writeData("--------\r\n");

// question 1
writeData("1: ");
if (q1a.isSelected())
 writeData("19-25 \r\n");
else if (q1b.isSelected())
 writeData("26-30 \r\n");
else if (q1c.isSelected())
 writeData("31-36 \r\n");
else if (q1d.isSelected())
 writeData("37-42 \r\n");
else if (q1e.isSelected())
 writeData("43 or higher \r\n");
else writeData("No Response\r\n");

// question 2
writeData("2: ");
if (q2a.isSelected())
 writeData("1 to 4 \r\n");
else if (q2b.isSelected())
 writeData("5 to 9 \r\n");
else if (q2c.isSelected())
 writeData("10 to 14 \r\n");
else if (q2d.isSelected())
 writeData("15 - 20 \r\n");
else if (q2e.isSelected())
 writeData("Over 20 \r\n");
else writeData("No Response\r\n");

// question 3
writeData("3: ");
if (q3a.isSelected())
 writeData("Platoon Leader ");
if (q3b.isSelected())
 writeData("Squad Leader ");
if (q3c.isSelected())
 writeData("Fireteam Leader ");
if (q3d.isSelected())
 writeData("Platoon Sergeant ");
if (q3e.isSelected())
 writeData("Rifleman ");
if (q3f.isSelected())
 writeData("Sniper ");
if (q3g.isSelected())
 writeData("Machine Gunner ");
if (q3h.isSelected())
 writeData("SAW Gunner ");
if (q3i.isSelected())
 writeData("Grenadier ");
if (q3j.isSelected())
 writeData(q3jText.getText());

if (q3a.isSelected()==false && q3b.isSelected()==false &&
 q3c.isSelected()==false && q3d.isSelected()==false &&
 q3f.isSelected()==false && q3e.isSelected()==false &&
 q3g.isSelected()==false && q3h.isSelected()==false &&
 q3i.isSelected()==false && q3j.isSelected()==false)
writeData("No Response");
writeData("\rn");

// question 4
writeData("4: ");
if (q4a.isSelected())
 writeData("Never \rn");
else if (q4b.isSelected())
 writeData("Less than 2 years ago \rn");
else if (q4c.isSelected())
 writeData("2-5 years ago \rn");
else if (q5c.isSelected())
 writeData("More than 6 years ago \rn");
else writeData("No Response\rn");

// question 5
writeData("5: ");
if (q5a.isSelected())
 writeData("Never \rn");
else if (q5b.isSelected())
 writeData("Less than 2 years ago \rn");
else if (q5c.isSelected())
 writeData("2-5 years ago \rn");
else if (q6c.isSelected())
 writeData("More than 6 years ago \rn");
else writeData("No Response\rn");

// question 6
writeData("6: ");
if (q4a.isSelected())
 writeData("None \rn");
else if (q4b.isSelected())
 writeData("Less than 3 \rn");
else if (q4c.isSelected())
 writeData("3-9 \rn");
else if (q5c.isSelected())
 writeData("10 or more \rn");
else writeData("No Response\rn");
writeData("7: ");
if (q7Text.getText().charAt(0) == '%')
 writeData("No Response\rn");
else writeData(q7Text.getText() + "\rn");

// question 8
writeData("8: ");
if (q8a.isSelected())
 writeData("Quick Response \rn");
else if (q8b.isSelected())
 writeData("Teamwork \rn");
else if (q8c.isSelected())
 writeData("Situational Awareness \rn");
else if (q8d.isSelected()) {
 writeData("Other: ");
 writeData(q8dText.getText() + "\rn");
}
else writeData("No Response\rn");

// question 9
writeData("9: ");
if (q9a.isSelected())
 writeData("None \r\n");
else if (q9b.isSelected())
 writeData("Less than 2 years \r\n");
else if (q9c.isSelected())
 writeData("2-5 years \r\n");
else if (q9d.isSelected())
 writeData("More than 6 years \r\n");
else writeData("No Response\r\n");
writeData("************************\r\n");
try
{
 ioFileStream.close();
} catch (Exception E)
{
 System.out.println("UserInfoWindow::actionPerformed: ERROR - Can't close file");
 this.setVisible(false);
}

public void itemStateChanged(ItemEvent e) {}
}

class UserInfoWindowPanel extends JPanel
{
 UserInfoWindowPanel()
 {
 setBackground(Color.white);
 }
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 // write stuff in panel
 }
}
public class TargetWindow extends JFrame implements MouseListener {

 // constants
 static int MAX_TARGETS = 10;
 static int CHAR_TO_INT_OFFSET = -48;
 static int NUM_BODY_AREAS = 3;
 static int head = 0;
 static int torso = 1;
 static int legs = 2;
 static int miss = 3;

 // jpanel
 FirstTargetWindowPanel panel;
 JLabel theImageLabel;
 Toolkit theToolKit;
 Container contentPane;

 // text fields
 String tempStr;
 String theImageName;
 String outputFileName;
 static String targetInfoFileName = "image_params.dat";

 // file streams
 RandomAccessFile outputStream;
 BufferedReader targetInfoStream;

 // internal vars
 int imageCount;
 int numTargets;
 int targetCount;
 int targetSelected;
 int aimPoint; // 0=head, 1=torso, 2=legs
int aimCoordinateX;
int aimCoordinateY;
boolean ranCorrectly;

/* Method: TargetWindow
 Description: This is the constructor for Target Window. It
 instantiates the window and
 the mouse listeners for it. In addition, it attempts
 to open the file created
 by UserInfoWindow that contains the results of the user
 survey, and opens the
 first image for viewing
*/
TargetWindow(String title, String theFileName)
{
 // call parent constructor
 super(title);
 ranCorrectly = true;

 outputFileName = theFileName;
 contentPane = getContentPane();

 // attempt to open file for writing
 try
 {
 createFileStreams();
 }
 catch (Exception e)
 {
 System.out.println("TargetWindow::TargetWindow: ERROR - The image
list file could not be read.");
 this.setVisible(false);
 ranCorrectly = false;
 }
 System.out.println("TargetWindow::TargetWindow: Output File Name: " + outputFileName);

 // initialize image count and retrieve first image
 getNextImage();
 imageCount = 1;
}

/* Method: getNextImage
 Description: This method retrieves the next image from the
 input/output file to be
 displayed
*/
private int getNextImage()
{
 // clear the frame
 contentPane.removeAll();
 ImageIcon tempImage;

 // attempt to read next image string from file
 try
 {
 tempStr = " ";
 while ((tempStr.startsWith("FILENAME:")) ==
false) & & (tempStr != null))
{ tempStr = targetInfoStream.readLine();
 outputFileStream.writeBytes(tempStr + "\r\n");
}

theImageName = tempStr.substring(10,tempStr.length());

} catch (Exception E)
{
 System.out.println("TargetWindow::getNextImage: Can't read next image filename. Exiting.");
 this.setVisible(false);
 return 0;
}

if (theImageName == null) // exit if no more images present in file
{
 System.out.println("TargetWindow::getNextImage: No more images. Exiting.");
 this.setVisible(false);
 // indicate failure to retrieve image
 return 0;
}
else // otherwise, place image in frame and repaint frame
{
 // create new image from filename
 tempImage = new ImageIcon(theImageName);
 // debug image name
 System.out.print("TargetWindow::getNextImage: Image Displayed: ");
 System.out.println(theImageName);
 // create new JLabel from image
 theImageLabel = new JLabel(tempImage, JLabel.NORTH_EAST);
 theImageLabel.addMouseListener(this);
 // resize frame to compensate for variable image sizes
 this.setSize(tempImage.getIconWidth()+10,
 tempImage.getIconHeight()+20);
 // add image to frame and repaint
 contentPane.add(theImageLabel);
 repaint();
 show();
 // indicate success
 return 1;
}

/* Method: openImageListFile
 Description: Attempts to open the input/output file that currently stores the results of the user survey as well as the list and description of all the images to be shown */
private void createFileStreams()
try {
 FileReader reader = new FileReader(targetInfoFileName);
 targetInfoStream = new BufferedReader(reader);

 outputFileStream = new RandomAccessFile(outputFileName,"rw");
 outputFileStream.seek(outputFileStream.length()); // go to end of file to write
}
} catch (Exception e) {
 System.out.println("TargetWindow::createFileStreams: ERROR - Can't open image list file");
 this.setVisible(false);
 ranCorrectly = false;
}

/* MouseListener functions that need to be included but have no functionality */
public void mousePressed(MouseEvent e) {} public void mouseReleased(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

/* Method: MouseClicked
 Description: Catches the event where the user has clicked the screen and thus has made a target selection for the current image. The coordinates of the mouse click are stored in local memory and also written to the i/o file *username*.txt along with information of where shot occured (which enemy, where on body)
*/
public void mouseClicked(MouseEvent e) {
 if ((e.getModifiers() & InputEvent.BUTTON1_MASK) == InputEvent.BUTTON1_MASK) {
 // record coordinates
 aimCoordinateX = e.getX();
 aimCoordinateY = e.getY();
 repaint();
 show();

 // sift through formatting
 tempStr = " ";
 while (tempStr.startsWith("-") == false)
 try {
 tempStr = targetInfoStream.readLine();
 }
 }
}
outputFileStream.writeBytes(tempStr + \"\r\n\");
}
catch (Exception E) {}

boolean selectedTargetFound = false;
boolean noMoreTargets = false;
targetCount = 1;
targetSelected = 0;
aimPoint = miss;
while (!selectedTargetFound && !noMoreTargets)
{
 tempStr = " ";
 try
 {
 tempStr = targetInfoStream.readLine();
 outputFileStream.writeBytes(tempStr + \"\r\n\");
 }
 catch (Exception E) {
 noMoreTargets = true;
 }
 //System.out.println("First number read as " + charToInt(tempStr.charAt(0)));
 if (charToInt(tempStr.charAt(0)) != targetCount)
 noMoreTargets = true;
 else
 {
 // read in and crop all of the unused numbers (6 total)
 int numsread = 0;
 while (numsread < 6) {
 String numString = "";
 while (charIsANum(tempStr.charAt(0)) == false) // go through blank spaces
 tempStr = tempStr.substring(1, tempStr.length());
 while (charIsANum(tempStr.charAt(0)) == true) { // get digits in number
 char firstChar = tempStr.charAt(0);
 numString = numString + firstChar;
 tempStr = tempStr.substring(1, tempStr.length());
 }
 numsread++;
 }
 // boxes for head, torso, legs stored in a 3x4 entry array
 int[][] targetAreaBox = new int[NUM_BODY_AREAS][4];
 for (int partCnt = 0; partCnt < NUM_BODY_AREAS; partCnt++)
 for (int boxCnt = 0; boxCnt < 4; boxCnt++)
 {
 String boxBoundString = "";
 while (charIsANum(tempStr.charAt(0)) == false) { // go through blank spaces
 tempStr = tempStr.substring(1, tempStr.length());
 }
 while (charIsANum(tempStr.charAt(0)) == true) { // get digits in number
 char firstChar = tempStr.charAt(0);
 boxBoundString += firstChar;
 // might be at eol
 if (tempStr.length() > 1)
 tempStr = tempStr.substring(1, tempStr.length());
 else
 // System.out.println(boxBoundString.valueOf(boxBoundString));
 }
break;
}
targetAreaBox[partCnt][boxCnt] =
stringToInt(boxBoundString);
}

//System.out.println("Target shot at (" + aimCoordinateX + ",
" + aimCoordinateY + ")");

// did we get 'em in the head?
if (aimCoordinateX > targetAreaBox[head][0] &&
aimCoordinateX < targetAreaBox[head][1] &&
aimCoordinateY > targetAreaBox[head][2] &&
aimCoordinateY < targetAreaBox[head][3]) {
 selectedTargetFound = true;
targetSelected = targetCount;
aimPoint = head;
System.out.println("TargetWindow::mouseClicked: User
Selected Target " +
targetCount + " at Coordinates (" +
aimCoordinateX + ", " + aimCoordinateY + ") (head)");
}
else // in the torso?
if (aimCoordinateX > targetAreaBox[torso][0] &&
aimCoordinateX < targetAreaBox[torso][1] &&
aimCoordinateY > targetAreaBox[torso][2] &&
aimCoordinateY < targetAreaBox[torso][3]) {
 selectedTargetFound = true;
targetSelected = targetCount;
aimPoint = torso;
System.out.println("TargetWindow::mouseClicked: User
Selected Target " +
targetCount + " at
Coordinates (" + aimCoordinateX + ", " + aimCoordinateY + ") (torso)");
}
else // in the legs?
if (aimCoordinateX > targetAreaBox[legs][0] &&
aimCoordinateX < targetAreaBox[legs][1] &&
aimCoordinateY > targetAreaBox[legs][2] &&
aimCoordinateY < targetAreaBox[legs][3]) {
 selectedTargetFound = true;
targetSelected = targetCount;
aimPoint = legs;
System.out.println("TargetWindow::mouseClicked: User
Selected Target " +
targetCount + " at
Coordinates (" + aimCoordinateX + ", " + aimCoordinateY + ") (legs)");
}
else // either we missed or we didn't hit this target
 targetCount++;
try {
 // more formatting
 while (tempStr.startsWith("-") == false) {
 tempStr = targetInfoStream.readLine();
 outputFileStream.writeBytes(tempStr + "$\n\n");
 }

 outputFileStream.writeBytes("$\n\n");
 outputFileStream.writeBytes("SME Target Selection Results
$\n\n");
 outputFileStream.writeBytes("-----------------------------
$\n\n");

 // write target info to file
 if (targetSelected != 0)
 outputFileStream.writeBytes("TargetSelected: " +
 targetSelected +
 "$\n\n");
 else
 outputFileStream.writeBytes("TargetSelected: " + "none $\n\n");

 String aimPointString;
 switch (aimPoint) {
 case 0: {
 aimPointString = "head";
 break;
 }
 case 1: {
 aimPointString = "torso";
 break;
 }
 case 2: {
 aimPointString = "legs";
 break;
 }
 default: {
 aimPointString = "miss";
 break;
 }
 }

 outputFileStream.writeBytes("Coordinates of Shot: " +
 aimCoordinateX +
 " " + aimCoordinateY + "$\n\n");
 outputFileStream.writeBytes("AimPoint: " + aimPointString +
 "$\n\n\n");

 outputFileStream.writeBytes("After-Action Review $\n\n");
 outputFileStream.writeBytes("----------------------------- $\n\n");
 outputFileStream.writeBytes("M4Mode:$\n\n");
 outputFileStream.writeBytes("p_hit:$\n\n");
 outputFileStream.writeBytes("p_kill:$\n\n");
}

catch (Exception E) {}
// retrieve new image and refresh frame
if (getNextImage() == 1)
 imageCount++;
else {
 try {
 outputFileStream.close();
 targetInfoStream.close();
 this.setVisible(false);
 }
 catch (Exception ex) {}}
}
else
{
 //right clicked
 System.out.println("TargetWindow::mouseClicked: Target right-clicked at (" + e.getX() + ", " + e.getY() + ")");
}
/* Method: didRunCorrectly
 Description: Returns the value of ranCorrectly, which becomes false if there is an error reading any of the required files */
public boolean didRunCorrectly()
{
 return ranCorrectly;
}
/* Method: charToInt
 Description: This function returns the value of numerical characters (i.e. charToInt('1') = 1) */
private int charToInt(char c)
{
 return (int)c + CHAR_TO_INT_OFFSET;
}
/* Method: stringToInt
 Description: This function returns the value of numerical string (i.e. stringToInt('321') = 321) and uses the charToInt function */
private int stringToInt(String s)
{
 int numDecimalPlaces = s.length();
 int currentPlace = s.length();
 int intLength = s.length();
 int value = 0;
 while (currentPlace > 0)
 {
 value +=
 (int)(charToInt(s.charAt(intLength -
currentPlace)))*Math.pow((double)10,(double)(currentPlace-1)))
 currentPlace--;
 }
 return value;
}
/* Method: charIsANum
 Description: Returns true if the char provided is a numerical character (i.e. charIsANum('1') == true)
 (however charIsANum('a') == false)
*/
private boolean charIsANum(char c)
{
 if (c >= '0' && c <= '9') return true;
 else return false;
}

// JPanel class definition for image JLabel
class FirstTargetWindowPanel extends JPanel
{
 FirstTargetWindowPanel()
 {
 setBackground(Color.white);
 }
}
public class AfterActionReviewWindow extends JFrame implements
ActionListener, ItemListener
{

 // jframe stuff
 Container contentPane;

 // filestream for reading/writing
 RandomAccessFile outputFileReaderStream;
 String fileName;

 //tempstr for sifting through formatting
 String tempStr;

 // coordinates of shot
 int aimPointX; int aimPointY;

 // buttons and text fields
 JButton submitButton;
 JRadioButton singleShot, doubleTap, threeRoundBurst, other;
 JTextField other_text, p_hit, p_kill;

 // constants
 static int CHAR_TO_INT_OFFSET = -48;

 /* Method: AfterActionReviewWindow
 * Description: This is the constructor for AfterActionReviewWindow.
 * It instantiates the window and
 * the and attempts to open the file created by
 * UserInfoWindow that contains the results
 * of the user survey and drill excercise
 */
public AfterActionReviewWindow(String title, String outputFileName) {
 super(title);
 fileName = outputFileName;

 // activate contentPane for window
 contentPane = getContentPane();
 contentPane.setBackground(Color.white);

 // attempt to open outputFileName
 try {
 outputFileReaderStream = new RandomAccessFile(new File(outputFileName), "rw");
 } catch (Exception E) {
 System.out.println("AfterActionReviewWindow::AfterActionReviewWindow:
 ERROR - Could not open " + outputFileName + " for filestream.");
 this.setVisible(false);
 }

 // retrieve first image
 getNextImage();
}

/* Method: getNextImage
 Description: This method clears the active window and loads the
 next image referred to in *username*.txt along
 with the after action review questions. In addition,
 this method is also responsible for adding
 the crosshairs of the shot taken by the user on the
 current image during the drill excercise
 */
private int getNextImage() {
 // clear the frame
 contentPane.removeAll();
 contentPane.setLayout(new FlowLayout(FlowLayout.CENTER));
 ImageIcon tempImage;

 // attempt to read next image string from file
 try {
 tempStr = " ";
 while ((tempStr.startsWith("FILENAME:")) == false) && (tempStr!=null))
 tempStr = outputFileReaderStream.readLine();
 } catch (Exception E) {return 0;}

 String theImageName = tempStr.substring(10,tempStr.length());
 if (theImageName == null) // exit if no more images present in file
 return 0;
 else // otherwise, place image in frame and repaint frame
 {
 // create new image from filename
 tempImage = new ImageIcon(theImageName);

 // debug image name
System.out.print("AfterActionReviewWindow::getNextImage: Image Displayed: ");
System.out.println(theImageName);

// display shot coordinates on image
String tempString = " ";
while (tempString.startsWith("Coordinates of Shot") == false)
 try {tempString = outputFileReaderStream.readLine();} catch (Exception E) {}
 tempString = tempString.substring(20).trim();
String xcoordString = tempString.substring(0,tempString.indexOf(' ')).trim();
String ycoordString = tempString.substring(tempString.indexOf(' ')).trim();

aimPointX = stringToInt(xcoordString); aimPointY = stringToInt(ycoordString)+5;

// add bullet to image
Image imageWithBullet = tempImage.getImage();
int w = imageWithBullet.getWidth(this);
int h = imageWithBullet.getHeight(this);
int pixels[] = new int [w * h];
PixelGrabber pg = new PixelGrabber(imageWithBullet,0,0,w,h,pixels,0,w);
try {pg.grabPixels();} catch (Exception E) {}

// create crosshairs around target
for (int x = (aimPointX - 10); x < (aimPointX + 11); x++)
 for (int y = (aimPointY); y < (aimPointY + 1); y++)
 {
 pixels[w*y + x] = 0xff000000 | Color.ORANGE.getRed() << 16 | Color.ORANGE.getGreen() << 8 | Color.ORANGE.getBlue();
 }

for (int y = (aimPointY - 10); y < (aimPointY + 11); y++)
 for (int x = (aimPointX); x < (aimPointX + 1); x++)
 {
 pixels[w*y + x] = 0xff000000 | Color.ORANGE.getRed() << 16 | Color.ORANGE.getGreen() << 8 | Color.ORANGE.getBlue();
 }

imageWithBullet = createImage(new MemoryImageSource(w,h,pixels,0,w));
tempImage.setImage(imageWithBullet);

// create new JLabel from new image
JLabel theImageLabel = new JLabel(tempImage, JLabel.NORTH_EAST);
contentPane.add(theImageLabel);

// resize frame to compensate for variable image sizes
this.setSize(tempImage.getIconWidth()+10, tempImage.getIconHeight()+ 200);

JLabel targetSelectedLabel = new JLabel("You fired at the point displayed above");
contentPane.add(targetSelectedLabel);

// add AAR questions and answer slots
AfterActionReviewPanel modeOfFirePanel = new AfterActionReviewPanel();
modeOfFirePanel.setLayout(new FlowLayout(FlowLayout.CENTER));
JLabel M4ModeLabel = new JLabel("Mode of Fire: ");
ButtonGroup M4ModeGroup = new ButtonGroup();
singleShot = new JRadioButton("Single Shot");
singleShot.setBackground(Color.white);
singleShot.addItemListener(this);
M4ModeGroup.add(singleShot);
doubleTap = new JRadioButton("Double Tap");
doubleTap.setBackground(Color.white);
doubleTap.addItemListener(this);
threeRoundBurst = new JRadioButton("Three-Round Burst");
threeRoundBurst.setBackground(Color.white);
threeRoundBurst.addItemListener(this);
other = new JRadioButton("Other");
other.setBackground(Color.white);
other.addItemListener(this);
M4ModeGroup.add(singleShot);
M4ModeGroup.add(doubleTap);
M4ModeGroup.add(threeRoundBurst);
M4ModeGroup.add(other);
other_text = new JTextField(10);
modeOfFirePanel.add(M4ModeLabel);
modeOfFirePanel.add(singleShot);
modeOfFirePanel.add(doubleTap);
modeOfFirePanel.add(threeRoundBurst);
modeOfFirePanel.add(other);
modeOfFirePanel.add(other_text);
contentPane.add(modeOfFirePanel);

AfterActionReviewPanel probPanel = new AfterActionReviewPanel();
JLabel p_hitLabel = new JLabel("Probability of Hit: ");
p_hit = new JTextField(3);
JLabel p_killLabel = new JLabel("Probability of Kill: ");
p_kill = new JTextField(3);
probPanel.add(p_hitLabel);
probPanel.add(p_hit);
probPanel.add(p_killLabel);
probPanel.add(p_kill);
contentPane.add(probPanel);

submitButton = new JButton("Submit");
submitButton.addActionListener(this);
contentPane.add(submitButton);

// repaint and show
repaint();
show();

// indicate success
return 1;
}

/* Method: charToInt
Description: This function returns the value of numerical
characters (i.e. charToInt('1') = 1)*/

UNCLASSIFIED
69
/private int charToInt(char c)
{
 return (int)c + CHAR_TO_INT_OFFSET;
}
/* Method: stringToInt
Description: This function returns the value of numerical string
(i.e. stringToInt('321') = 321)
and uses the charToInt function
*/
private int stringToInt(String s)
{
 int numDecimalPlaces = s.length();
 int currentPlace = s.length();
 int intLength = s.length();
 int value = 0;
 while (currentPlace > 0)
 {
 value +=
 (int)(charToInt(s.charAt(intLength -
 currentPlace)))*Math.pow((double)10, (double)(currentPlace-1));
 currentPlace--;
 }
 return value;
}
public void itemStateChanged(ItemEvent e)
{}
/* Method: actionPerformed
Description: This function is required for a frame to implement
ActionListener.
It fires when the submit button is pressed and
records all of the
answers indicated at the time of submittal to
$username.txt$ and
then calls getNextImage to retrieve the next image
*/
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == submitButton)
 {
 // put entries into text file
 String tempString = " ";
 // M4Mode
 try
 {
 // find M4Mode text area in $username$.txt
 while (tempString.startsWith("M4Mode") == false)
 tempString = outputFileReaderStream.readLine();
 // enter user response for M4Mode
 String outputString = " ";
 if (singleShot.isSelected())
 {
 outputString = "Single Shot";
 }
 }
 }
else if (doubleTap.isSelected())
{
 outputString = "Double Tap";
}
else if (threeRoundBurst.isSelected())
{
 outputString = "Three-Round Burst";
}
else if (other.isSelected())
{
 outputString = other_text.getText();
}
else
{
 outputString = "No Response";
}
outputFileReaderStream.writeBytes(outputString);
}
catch (Exception E)
{
 System.out.println("AfterAction ReviewWindow::actionPerformed:
ERROR - Cannot find appropriate place to write M4Mode data.");
 this.setVisible(false);
}

// repeat for p_hit and p_kill

// p_hit
try
{
 while (tempString.startsWith("p_hit") == false)
 tempString = outputFileReaderStream.readLine();

 String outputString = p_hit.getText();
 outputFileReaderStream.writeBytes(outputString);
}
catch (Exception E)
{
 System.out.println("AfterAction ReviewWindow::actionPerformed:
ERROR - Cannot find appropriate place to write p_hit data.");
 this.setVisible(false);
}

// p_kill
try
{
 while (tempString.startsWith("p_kill") == false)
 tempString = outputFileReaderStream.readLine();

 String outputString = p_kill.getText();

 //long numBytesInTempString =
 //Long.getLong(tempString).longValue();
 //outputFileReaderStream.seek(outputFileReaderStream.getFilePointer() -
 //numBytesInTempString);
 outputFileReaderStream.writeBytes(outputString);
}
catch (Exception E)
{
 System.out.println("AfterActionReviewWindow::actionPerformed:
 ERROR - Cannot find appropriate place to write p_kill data.");
 this.setVisible(false);
}

if (getNextImage() == 0)
{
 try
 {
 System.out.println("AfterActionReviewWindow::actionPerformed:
 Attempting to close " + fileName);

 outputFileReaderStream.setLength(outputFileReaderStream.getFilePointer());
 outputFileReaderStream.close();
 }
 catch (Exception E)
 {
 System.out.println("AfterActionReviewWindow::actionPerformed:
 ERROR - Cannot close " + fileName);
 }
 this.setVisible(false);
}

// JPanel class definition for image JLabel
class AfterActionReviewPanel extends JPanel
{
 AfterActionReviewPanel()
 {
 setBackground(Color.white);
 }
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 // write stuff in panel
 }
}