Award Number: W81XWH-08-1-0026

TITLE: Dependency on SRC-Family Kinases for Recurrence of Androgen-Independent Prostate Cancer

PRINCIPAL INVESTIGATOR: Irwin H. Gelman, Ph.D.

CONTRACTING ORGANIZATION: Health Research, Inc., Roswell Park Cancer Institute Division, Elm & Carlton Streets, Buffalo, NY 14263

REPORT DATE: AUG 2009

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

 X Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Abstract
Prostate cancers that recur after so-called androgen-ablation therapy (“CR-CaP”) are typically more aggressive, more likely to spread to local lymph nodes and bones, and less likely to respond to second-tier treatments, and therefore, contribute to significantly decreased patient survival. We posit that enzymes called Src-family kinases (SFK) are required for the progression to CR-CaP, and thus, targeting these enzymes should prevent CR-CaP formation and suppress their growth. We will use animal models of human and mouse CR-CaP in conjunction with genetic and biochemical experiments to show that SFK are critical to the formation of CR-CaP, and thus, are therapeutically targetable using SFK-specific drugs. Our important pre-clinical studies on the critical role played by SFK in CR-CaP disease will serve as the foundation to establish immediate clinical trials in which CaP patients are treated with drugs such as KX2-391 at the commencement of androgen-deprivation therapy.

Subject Terms
Prostate cancer, Src, androgen receptor, castration recurrent, CWR22, TRAMP, tyrosine kinase inhibitors
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
</tbody>
</table>

Table of Contents
Introduction

We are studying the role of Src-family kinases (SFK) in promoting castration-recurrent prostate cancer (CR-CaP) using genetic and pharmacological approaches along with several animal models of CR-CaP. Our synergistic collaboration is based on the expertise of the initiating PI (Gelman) in the molecular signaling of SFK in cancer progression, combined with the expertise of the partnering PIs in the CWR22 and TRAMP CR-CaP mouse models (Mohler and Smith, respectively), and in the role of neuroendocrine cells (NE) in the progression of CR-CaP (Smith).

Body

The following is a description of our synergistic research accomplishments in the past year in relation to the specific components of the original SOW (bolded).

Task 1. Produce CWR22 cells with tetracycline-regulated Src or Lyn-shRNA expression

Accomplishments to date-

We have procured and/or produced the necessary Src- and Lyn-specific shRNAs and cloned them into constitutive and inducible lentivirus vectors as described in the grant. These vectors express GFP as a marker of virus infection (driven by an IRES element in the virus construct), and in the tetracycline-inducible system, the lentivirus construct that expresses the tTR tet-inducible transactivator, also expresses a DsRed cassette downstream of an IRES.

These vectors were tested for their ability to knockdown human Src or Lyn protein levels. Thus, 293T cells were infected at multiplicities>1 GFP-forming virus/cell, and after 3-4 days of culture, the cell lysates were probed for Src or Lyn levels by immunoblotting (IB) with specific monoclonal antibodies (MAb). Fig. 1 shows that both shRNAs were able to knock down their respective targets roughly 8- to 10-fold compared to cells infected with control virus.

We then tested whether these viruses could efficiently infect primary cultures of androgen-dependent CWR22 tumor cells taken from male SCID mice that were implanted with sustained release testosterone pellets. Thus, tumors around 250 mm³ were removed, converted into single cell suspensions by incubation with collagenase, washed and the cell suspension infected with a titer of control or Src-shRNA lentiviruses that should yield roughly 90% infection. Fig. 2 shows that >90% of the CWR22 cells showed the surrogate GFP marker for virus infection under these conditions, and indeed, this was even higher than the infectivity of 293T cells with the same virus stock. The primary CWR22 tumor cells could be passaged at least three times until they began to senesce, but they retained their GFP expression during this period (roughly 2 weeks) as shown in Fig. 3. The ability to isolate single-cell populations of primary CWR22 cells, to efficiently transduce these cells, and then to reintroduce them into SCID mice is not a trivial accomplishment. This success will allow us to continue our projected studies on the role of SFK and androgen receptor tyrosine phosphorylation in models of CR-CaP.

The synergy in this Task is based on the production and testing of the lentiviruses by the Gelman lab, and the production of the CWR22 primary xenografts by the Mohler/Smith labs through the RPCI Mouse Tumor Model Resource.
Task 2. Inject SCID mice with CWR22 Src- or Lyn-shRNA (or vector) cells

Accomplishments to date- We have infected our first set of primary cultures of CWR22 tumor cells harvested from tumors in testosterone-pelleted male SCID mice (as described in Task 1) with control, Src- and Lyn-shRNA lentiviruses, and these cells have been reinjected s.c. at 10^6 cells + Matrigel into fresh testosterone-pelleted male SCID mice. When the primary tumor reaches 150-250 mm3, the mice will have their pellets removed and then be castrated surgically. We will monitor primary tumor regression, and recurrence of the tumor at the primary site, over the ensuing four-five months; the usual time to appearance of recurrent growth is approximately 150 days.

The synergy in this Task is based on the production of the lentiviruses by the Gelman lab, and the production of the CWR22 primary xenografts by the Mohler/Smith labs though the RPCI Mouse Tumor Model Resource.

<table>
<thead>
<tr>
<th>CWR-22</th>
<th>pGIPZ control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src shRNA</td>
<td>Fluor</td>
</tr>
<tr>
<td></td>
<td>Phase contrast</td>
</tr>
</tbody>
</table>

Fig. 3. Fluorescence (Fluor) and phase contrast microscopy of primary CWR22 and 293T cells infected with Src-shRNA or control pGIPZ lentivirus after three passages in vitro.

Task 3. Test whether KX2-391 (vs. vehicle or Dasatinib) can prevent recurrent Al-CaP or NE malignancy

Accomplishments to date- We have just set up injections of primary site-CWR22 tumors in pelleted male SCID mice, as well as injections of C57BL/6 mice with TRAMP-C2 (Al-CaP) cells. Once these primary tumors reach 250mm3, these mice will be castrated, and along with a group of young TRAMP males, we will treat these mice with vehicle, or an inhibitor of tyrosine kinase activity (KX01 or Dasatinib) and monitor tumor growth.

The synergy in this Task is based on the combined efforts by all three PIs’ labs in regards to the mouse models and use of the Src-targeting drugs.

Task 4. Determine if ARY534E induces recurrent Al-CaP in Src- or Lyn-shRNA CWR22 cells

Accomplishments to date- Starting with an HA-tagged AR expression vector from Betty Wilson (UNC), we produced an HA-tagged ARY534E mutant expression vector. This has been verified by sequencing and is now undergoing testing for expression stability in 293T cells.

Task 5. Demonstrate increased NE proliferation in recurrent Al-CaP (CWR22) or NE (TRAMP) lesions

Accomplishments to date- these experiments have not been started yet.

Task 6. Produce Src/- or Lyn/- TRAMP mice, test for post-castration NE malignancy progression

Accomplishments to date- We have procured Src/- mice (C57BL/6) from a pathogen-free facility (SUNY at Buffalo) and Lyn/- frozen embryos from Jackson Labs. We have started to cross the TRAMP/TRAMP mice into the Src-null background, and expect to have final crosses in 3-4 months.

Task 7. Transduce Src- or Lyn-null TRAMP early CaP cells with ARY534E or WT-AR, test for AI growth in castrated TRAMP mice

Accomplishments to date- these experiments have not been started yet.

Task 8. Analyze the role of SFK in NE-mediated Al-CaP growth human AD-CaP cell lines

Accomplishments to date- these experiments have not been started yet.

Task 9. Analyze the role of SFK in NE neuropeptide secretion

Accomplishments to date- these experiments have not been started yet.
Task 10. Analyze the role of SFK in NE proliferation and neuropeptide secretion in vitro
Accomplishments to date—these experiments have not been started yet.

Key Research Accomplishments
- Production of Src- and Lyn-shRNA lentiviruses (constitutive and inducible expression)
- Successful efficient transduction of primary androgen-dependent CWR22 tumor cells with shRNA-encoding lentiviruses
- Demonstration of Src and Lyn knockdown in human cells using the shRNA-encoding lentiviruses
- Re-injection of testosterone pelleted SCID mice with transduced primary CWR22 cells

Reportable Outcomes
None.

Conclusion
The project is progressing at pace with no major obstacles. The synergistic component of the award has been critical to our success thus far and to our projected ability to proceed with the outstanding tasks. This project could not have been accomplished by each of the individual labs. Specifically, this project is progressing strictly because of the combining of the various expertise, such as the active use of the CWR22 and TRAMP models, the isolation and identification of NE cells, and the development and use of the shRNA-encoding lentiviruses. The PIs have also had scheduled meetings to strategize and to review data.

References
None

Appendices
None