A Network Optimization solution using SAS/OR® tools for the Department of the Army Branching problem.

by

Michael C Grierson
Report Documentation Page

Title and Subtitle:
A Network Optimization solution using SAS/OR tools for the Department of the Army Branching Problem.

Authors:
Michael Grierson

Performing Organization Name(s) and Address(es):
Human Resources Command, Alexandria, VA 22332

Distribution/Availability Statement:
Approved for public release; distribution unlimited

Subject Terms:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Limitation of Abstract: 12 pages

Name of Responsible Person:

Standard Form 258 (Rev. 8-96)
Prepared by AMDD Std. 256.18
This paper will demonstrate the use of SAS® and SAS/OR® to solve a long standing Army problem of assigning ROTC cadets to their initial basic branch (Infantry, Armor, etc). The paper starts with a problem statement, describes the problem as a network optimization and then shows model results after adding each of the constraints from the problem statement. The paper summarizes with comments about why a network optimization is a good solution for this type of problem. Finally, the paper makes the assertion that SAS® data manipulation and statistics procedures are an additional benefit provided by the SAS/OR® solution not found elsewhere.
INTRODUCTION

This paper shows how the Army could optimize the assignments of Reserve Officer Training Corp (ROTC) cadets to their initial basic branch in the Army using a network optimization. After an overview of the business problem is provided, we’ll implement a solution using the NETFLOW procedure and repeat that network solution using the OPTMODEL procedure. The OPTMODEL implementation will be extended with additional constraints.

In this paper, we’ll solve this problem one step at a time. Initially, we’ll just assign the cadets to their branches based on their preferences and Army branch ‘demand’, then add constraints and assess the impact of these constraints.

PROBLEM DETAILS

The following facts apply to the ROTC assignment example used in this paper.

We start with a ‘supply’ of 2545 cadets.
Each cadet has 5 basic branch preferences, gender, and an Order of Merit Score (OMS) attribute.
The Army basic branches have a total of 2545 assignments (demands).
The Army cannot put females in combat arms branches (IN, AR, and FA).
The Army needs to proportionally distribute cadets based on gender, and OMS.
The objective of this model is to maximize cadet satisfaction while still meeting Army need.

The initial problem of assigning 2545 cadets to basic branches with maximum cadet satisfaction (a cadet is scored as satisfied if they get their 1st, 2nd or 3rd preference) will use the OMS values, cadet preferences, and the branch demands. Subsequently, constraints related to gender and OMS values will be included.

AN INITIAL MODEL

An example of data input for this model may add clarity and is shown is in Figure 1. This data shows the Supply side input to this model, with P1-P5 being that cadet’s Branch preferences. The data in figure 2 shows the Army Branch demand for these cadets. We have 2545 cadets and branch demand also sums to 2545.

<table>
<thead>
<tr>
<th>OMS_Score</th>
<th>Sex</th>
<th>Race</th>
<th>PB</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.21103</td>
<td>M</td>
<td>2</td>
<td>IN</td>
<td>IN</td>
<td>EN</td>
<td>FA</td>
<td>MP</td>
<td>SC</td>
<td>1</td>
</tr>
<tr>
<td>96.859133</td>
<td>F</td>
<td>1</td>
<td>AV</td>
<td>AV</td>
<td>AG</td>
<td>FI</td>
<td>MS</td>
<td>MI</td>
<td>2</td>
</tr>
<tr>
<td>96.692956</td>
<td>M</td>
<td>1</td>
<td>AV</td>
<td>AV</td>
<td>MS</td>
<td>AR</td>
<td>MI</td>
<td>IN</td>
<td>2</td>
</tr>
<tr>
<td>96.545999</td>
<td>M</td>
<td>1</td>
<td>AV</td>
<td>AV</td>
<td>IN</td>
<td>EN</td>
<td>FA</td>
<td>AR</td>
<td>4</td>
</tr>
<tr>
<td>96.221521</td>
<td>M</td>
<td>1</td>
<td>IN</td>
<td>IN</td>
<td>MI</td>
<td>EN</td>
<td>MP</td>
<td>AR</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 1, Supply: cadet data (5 of 2545) ordered by OMS

PROC NETFLOW takes a data set of nodes and arcs as basic input. Given the data represented in Figures 2 and 3, we should be able to assemble a dataset of nodes (both supply and demand) and the arcs between them. The node data should look like that represented in first column of Figure 4. The supply nodes are positive and the demand nodes are negative, conservation of flow should sum all nodes to zero.
After setting up the basic problem, the challenge becomes determining a method for assigning values to arcs (that connect ROTC cadets to assignments). Regular SAS® data step procedures will support this nicely. Starting with all the arcs (cadet to basic branch path, one per branch for every cadet), all arcs are scored as a 1 and the score is subsequently adjusted based on branch preferences and OML scores. This scoring logic is shown below in Figure 3.

- All arcs initially scored as 1
- Score then adjusted for preferences,
 - if 1st preference then that arc is given, +5
 - if 2nd then +4, if 3rd then +3,
 - if 4th then +2, if 5th then +1.
- Score then adjusted for OMS like so,
 - new Score = current Score/OMS ranking

The Arc Data for cadet 3 is represented in the right side of Figure 4. Note that the arc dataset is assembled in a SAS Data step using logic that builds the arcs from the node data (essentially node data is all from the input files) and the scoring logic mentioned in Figure 3. A graphic of the arcs for cadet 3 are shown in Figure 5. Thicker lines represent the higher scored arcs (here scores are called _cost_, the 'default' name in this procedure).
Node Data (mostly, for cadet 3), supply is positive and demand are negative

<table>
<thead>
<tr>
<th>node</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Arc Data for cadet 3 (with scores called _cost_)

<table>
<thead>
<tr>
<th>Obs</th>
<th>from</th>
<th>cost</th>
<th>name</th>
<th>to</th>
<th>capac</th>
<th>lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>3</td>
<td>0.3333</td>
<td>3_ad</td>
<td>ad</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>0.3333</td>
<td>3_ag</td>
<td>ag</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>0.3333</td>
<td>3_cm</td>
<td>cm</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>0.3333</td>
<td>3_en</td>
<td>en</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>0.3333</td>
<td>3_fa</td>
<td>fa</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>36</td>
<td>3</td>
<td>0.3333</td>
<td>3_fi</td>
<td>fi</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>0.3333</td>
<td>3_tc</td>
<td>tc</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>0.3333</td>
<td>3_mp</td>
<td>mp</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>0.3333</td>
<td>3_od</td>
<td>Od</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>0.3333</td>
<td>3_qm</td>
<td>Qm</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>0.3333</td>
<td>3_sc</td>
<td>Sc</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>0.6667</td>
<td>3_in</td>
<td>In</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td>1.3333</td>
<td>3_mi</td>
<td>mi</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>1.3333</td>
<td>3_ar</td>
<td>ar</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>2</td>
<td>3_av</td>
<td>av</td>
<td>1</td>
<td>.</td>
</tr>
</tbody>
</table>

Figure 4, Node and Arc Data Sets for Cadet 3

Figure 5, Node and Arc Data for Cadet 3
A standard form representation of this problem is below. The objective function in Figure 6 (below the word maximize), represents 38175 arcs (if written out, this formula would have 38175 variables and coefficients). The constraint equations (below the words 'subject to') represent 2545 possible cadets for each branch.

maximize
1.00*1_ad + 1.00*1_ag + 1.00*1_ar + 1.00*1_av + 1.00*1_cm + 1.00*1_fi +
1.00*1_mi + 1.00*1_od + 1.00*1_qm + 1.00*1_tc + 2.00*1_sc + 3.00*1_mp +
4.00*1_fa + 5.00*1_en + 6.00*1_in + 0.50*2_ad + 0.50*2_ar + 0.50*2_cm +
0.50*2_en + 0.50*2_fa + 0.50*2_mp + 0.50*2_od + 0.50*2_qm +
0.50*2_tc + 0.50*2_sc + 1.00*2_mi + 2.00*2_fi + 0.50*2_ag + 0.50*2_av +
0.33*3_ad + 0.33*3_ag +
0019*2544_ar + .0023*2544_cm + .0003*2545_ag + .0003*2545_av +
0003*2545_cm + .0003*2545_fa + .0003*2545_en + .0003*2545_mp +
0003*2545_od + .0003*2545_qm + .0003*2545_sc + .0003*2545_tc +
00072545_m + .0011*2545_en + .0015*2545_ar + .0019*2545_fi +
0023*2545_ad

subject too
1_ad + 2_ad + 3_ad + 4_ad + 5_ad + 6_ad + ... + 2543_ad + 2544_ad + 2545_ad = 82
1_ag + 2_ag + 3_ag + 4_ag + 5_ag + 6_ag + ... + 2543_ag + 2544_ag + 2545_ag = 144
1_ar + 2_ar + 3_ar + 4_ar + 5_ar + 6_ar + ... + 2543_ar + 2544_ar + 2545_ar = 128
1_av + 2_av + 3_av + 4_av + 5_av + 6_av + ... + 2543_av + 2544_av + 2545_av = 146
1_cm + 2_cm + 3_cm + 4_cm + 5_cm + 6_cm + ... + 2543_cm + 2544_cm + 2545_cm = 67
1_en + 2_en + 3_en + 4_en + 5_en + 6_en + ... + 2543_en + 2544_en + 2545_en = 189
1_fa + 2_fa + 3_fa + 4_fa + 5_fa + 6_fa + ... + 2543_fa + 2544_fa + 2545_fa = 233
1_fi + 2_fi + 3_fi + 4_fi + 5_fi + 6_fi + ... + 2543_fi + 2544_fi + 2545_fi = 35
1_in + 2_in + 3_in + 4_in + 5_in + 6_in + ... + 2543_in + 2544_in + 2545_in = 282
1_mi + 2_mi + 3_mi + 4_mi + 5_mi + 6_mi + ... + 2543_mi + 2544_mi + 2545_mi = 362
1_mp + 2_mp + 3_mp + 4_mp + 5_mp + 6_mp + ... + 2543_mp + 2544_mp + 2545_mp = 100
1_od + 2_od + 3_od + 4_od + 5_od + 6_od + ... + 2543_od + 2544_od + 2545_od = 308
1_qm + 2_qm + 3_qm + 4_qm + 5_qm + 6_qm + ... + 2543_qm + 2544_qm + 2545_qm = 255
1_sc + 2_sc + 3_sc + 4_sc + 5_sc + 6_sc + ... + 2543_sc + 2544_sc + 2545_sc = 150
1_tc + 2_tc + 3_tc + 4_tc + 5_tc + 6_tc + ... + 2543_tc + 2544_tc + 2545_tc = 150

subject too
1_ad + 1_ag + 1_ar + 1_av + 1_cm + 1_en + 1_fa + 1_fi + 1_in + 1_mi + 1_od + 1_qm + 1_sc + 1_tc = 1
2_ad + 2_ag + 2_ar + 2_av + 2_cm + 2_en + 2_fa + 2_fi + 2_in + 2_mi + 2_od + 2_qm + 2_sc + 2_tc = 1
3_ad + 3_ag + 3_ar + 3_av + 3_cm + 3_en + 3_fa +
...
2545_ad + 2545_ag + 2545_ar + 2545_av + 2545_cm + 2545_en + 2545_fa + 2545_fi + 2545_in + 2545_mi + 2545_od + 2545_qm + 2545_sc + 2545_tc = 1

Figure 6, Standard form

The cadet characteristics of branch preference and OML scores are used to assign coefficients for the objective function, and the values in the constraints variables are either 0 or 1.

Now that we have datasets for nodes and arcs, we are all set to run a PROC NETFLOW.

```plaintext
proc netflow maximize
    nodedata=node_data
    arcdata=arc_data
    arcout= sol;
reset maxit1 = 30000;
run;
```

Figure 7, PROC NETFLOW

We also specify an output dataset (arcout) and a maximum number of iterations (reset maxit1 = 30000) as shown in Figure 7.

The log file lines from this NETFLOW procedure are shown below and you can see that an optimum solution was found.

```plaintext
NOTE: Number of iterations performed (neglecting any constraints)= 10742 .
NOTE: Of these, 7944 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Maximal total cost= 48.945545982 .
NOTE: The data set WORK38175.SOL has 38175 observations and 14 variables
```

Figure 8, Log file output showing PROC NETFLOW output.
AN INITIAL SOLUTION

Results for cadet 3 (from the sol dataset specified by the arcout clause) show that the cadet has a ‘KEY_ARC BASIC’ which assigns that cadet to the AV branch.

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>cost</th>
<th>_capac</th>
<th>name</th>
<th>SUPPLY</th>
<th>DEMAND</th>
<th>FLOW</th>
<th>RCOST</th>
<th>R_COST</th>
<th>ANUMB</th>
<th>TNUMB</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ad</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_ad</td>
<td>1</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>11836</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 ag</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_ag</td>
<td>1</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>12594</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 ar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3_ar</td>
<td>1</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>34688</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 av</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3_av</td>
<td>1</td>
<td>146</td>
<td>1</td>
<td>2</td>
<td>-1.66</td>
<td>36445</td>
<td>33</td>
<td>KEY_ARC_BASIC</td>
</tr>
<tr>
<td>3 cm</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_cm</td>
<td>1</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>15352</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 en</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_en</td>
<td>1</td>
<td>189</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>17110</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 fa</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_fa</td>
<td>1</td>
<td>233</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>18888</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 fi</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_fi</td>
<td>1</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>20625</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 in</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_in</td>
<td>1</td>
<td>281</td>
<td>0</td>
<td>0</td>
<td>-1.67</td>
<td>22383</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 mi</td>
<td>0.66667</td>
<td>1</td>
<td>0</td>
<td>3_mi</td>
<td>1</td>
<td>363</td>
<td>0</td>
<td>0</td>
<td>-1.33</td>
<td>32390</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 mp</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_mp</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>21440</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 od</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_od</td>
<td>1</td>
<td>208</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>25998</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 qm</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_qm</td>
<td>1</td>
<td>164</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>27566</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 sc</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_sc</td>
<td>1</td>
<td>255</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>29414</td>
<td>33</td>
<td>LOWERED</td>
</tr>
<tr>
<td>3 tc</td>
<td>0.33333</td>
<td>1</td>
<td>0</td>
<td>3_tc</td>
<td>1</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>-1.66</td>
<td>31172</td>
<td>33</td>
<td>LOWERED</td>
</tr>
</tbody>
</table>

Figure 9, arc data from sol dataset
(_cost_ column is what we are maximizing)

Assignment results, shown below in Figure 10, are for the first and last cadets (highest and lowest OMS). You can see that the _cost_ variable is used to maximize cadet satisfaction. The more cadets get their 1st choice, the larger the aggregate solution. This solution has a maximum cost = 48.945545982, from the log file output of Figure 8.

<table>
<thead>
<tr>
<th>RANK</th>
<th>SEX</th>
<th>OMS</th>
<th>assmbled</th>
<th>BR1</th>
<th>BR2</th>
<th>BR3</th>
<th>BR4</th>
<th>BR5</th>
<th>choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>97.2110</td>
<td>6</td>
<td>IN</td>
<td>IN</td>
<td>EN</td>
<td>FA</td>
<td>MP</td>
<td>SC</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>96.8591</td>
<td>3</td>
<td>AV</td>
<td>AV</td>
<td>AG</td>
<td>RI</td>
<td>MS</td>
<td>MI</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>96.6930</td>
<td>2</td>
<td>AV</td>
<td>AV</td>
<td>MS</td>
<td>AR</td>
<td>MI</td>
<td>IN</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>96.5456</td>
<td>1.5</td>
<td>AV</td>
<td>AV</td>
<td>IN</td>
<td>EN</td>
<td>FA</td>
<td>AR</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>96.2215</td>
<td>1.2</td>
<td>IN</td>
<td>IN</td>
<td>MI</td>
<td>EN</td>
<td>MP</td>
<td>AR</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>95.9808</td>
<td>1</td>
<td>EN</td>
<td>EN</td>
<td>MI</td>
<td>IN</td>
<td>AR</td>
<td>MS</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>95.5532</td>
<td>0.85714286</td>
<td>MP</td>
<td>MP</td>
<td>EN</td>
<td>MI</td>
<td>AR</td>
<td>FA</td>
</tr>
</tbody>
</table>

Figure 10, Cadet Assignments compared to cadet preference.

The Demand objectives are filled by this solution and Cadet Satisfaction is maximized as shown in Figure 11 below.
96.857% cadet satisfaction is pretty good, especially when we are exactly matching the Army branch need (Demand), but we have ignored the additional constraints regarding gender and combat arms, and quality.

The constraint that prohibits females from being assigned to the Combat Arms (IN, FA, and AR) branches can be implemented in NETFLOW Procedure by simply deleting the arcs between female cadets and those three branches from the arcs dataset. What happens if you wanted to add constraints to proportionally distribute females to the remaining branches? You can see from Figure 12 below that the distribution of cadets by 1st preference when compared to the distribution of cadets after the demand constraint is applied. The 1st preference distribution (on the left) makes the AG branch almost 50% female. A proportional distribution by gender constraint could be used to make all permitted branches more representative of the whole population.
The NETFLOW procedure supports applying proportional distribution constraints (via 'intermediate nodes') and subsequently applying demand side constraints ('side constraints'), but the OPTMODEL syntax better supports the application of many proportional distribution and demand side constraints.

AN OPTMODEL SOLUTION

An OPTMODEL version of this network model will be developed before we add any more constraints. The OPTMODEL procedure adds language to support the Operations Research (OR) Math Programming Language style of modeling using index sets and associated logic constructs. The data sets of nodes from the prior model will be immediately read into Index Sets, we'll create an arcs array and we'll re-run the model above. An example of running input data into a data set, then an index set is shown below. To create the cadets and goals data sets, read in the cadets.csv file and the goals.txt file.

```plaintext
filename cadet './ins/cadets.csv';
filename goal './ins/goal.txt';
/* read in the cadet data */
data cadets_loaded;
  infile cadet DLM=',' DSD MISSOVER;
  input OMS $ SEX $ RACE $ prevbr $ BR1 $ BR2 $ BR3 $ BR4 $ BR5 $ acd $ ;
  if _N_ > 1;
    omsnbr = input(OMS,9.);
    ac = input(acd,9.);
    RCE='1';
    if RACE ne '1' then RCE='2';
run;

proc sort data=cadets_loaded;
  by descending omsnbr;
run;

data cadets;
  set cadets_loaded;
  rank=_N_;
run;

/* this reads in the demand data goals.txt */
data goalst(drop=goal);
  infile goal missover;
  input BR $1-2 goal $ ;
  goalnbr = input(goal,9.);
run;

Then do some sql and data stepping to expand the goals dataset to support additional constraints and some calculations.

```plaintext
proc sql; select count(*) as cnt into :all_cnt from cadets; quit;
proc sql; select count(*) into :fem_cnt from cadets where SEX='F'; quit;
proc sql; select count(*) into :a1_cnt from cadets where ac = 1 ; quit;
proc sql; select count(*) into :a2_cnt from cadets where ac = 2 ; quit;
proc sql; select count(*) into :a3_cnt from cadets where ac = 3 ; quit;
proc sql; select count(*) into :a4_cnt from cadets where ac = 4 ; quit;
proc sql; select count(*) into :min_cnt from cadets where RACE ne '1' ; quit;
proc sql; select count(*) into :min2_cnt from cadets where RACE eq '2' ; quit;
proc sql; select count(*) into :min3_cnt from cadets where RACE eq '3' ; quit;
proc sql; select count(*) into :min4_cnt from cadets where RACE eq '4' ; quit;
proc sql; select count(*) into :min5_cnt from cadets where RACE eq '5' ; quit;
proc sql; select avg(omsnbr) into :avg_oms from cadets; quit;
proc sql; select sum(goalnbr) as cnt into :ca_cnt from goalst where BR in ('IN','AR','FA'); quit;

data goals;
 set goalst;
 femgoals=round(goalnbr * &fem_cnt/(&all_cnt-&ca_cnt),1);
 if BR in ('IN' 'AR' 'FA') then femgoals = 0;
 mingoals=round(goalnbr * &min_cnt/(&all_cnt,1));
```
Call the OPTMODEL procedure and read the cadets and the goals data sets into index sets (load ‘nodes’ in network terms), create an arcs index set, and declare an index set of decision variables x. You can check the index set contents, by looking into your output file for the results of the print statements.

```
proc optmodel printlevel=2;
 set C;
 string OMS{C};
 string SEX{C};
 string RACE{C};
 string prevbr{C};
 string BR1{C};
 string BR2{C};
 string BR3{C};
 string BR4{C};
 string BR5{C};
 number omsnbr{C};
 number ac{C};
 string RCE{C};
 number rank{C};
 read data cadets into C=[_N_] OMS SEX RACE prevbr
 BR1 BR2 BR3 BR4 BR5 omsnbr ac RCE rank;
 print OMS SEX RACE prevbr BR1 BR2 BR3 BR4 BR5 omsnbr ac RCE rank;
 set B;
 string BR{B};
 number goalnbr{B};
 number femgoals{B};
 number mingoals{B};
 number min2goals{B};
 number min3goals{B};
 number min4goals{B};
 number min5goals{B};
 number algoals{B};
 number a2goals{B};
 number a3goals{B};
 number a4goals{B};
 number qgoals{B};
 read data goals into B=[_N_] BR goalnbr femgoals mingoals
 min4goals min3goals min2goals min5goals algoals
 a2goals a3goals a4goals qgoals;
 print BR goalnbr femgoals mingoals min4goals min3goals min2goals
 min5goals algoals a2goals a3goals a4goals qgoals;
 Create the arcs index set and declare an x decision variable.
 number arc{B,C};
 for{i in B, j in C}
 if BR[i]=BR1[j] then arc[i,j] = 5/rank[j];
```
else if BR[i]=BR2[j] then arc[i,j] = 4/rank[j];
else if BR[i]=BR3[j] then arc[i,j] = 3/rank[j];
else if BR[i]=BR4[j] then arc[i,j] = 2/rank[j];
else if BR[i]=BR5[j] then arc[i,j] = 1/rank[j];
else arc[i,j]=0;
/* print arc; */

Create subsets of the cadets index set, like all females, or academic degree type 1, or all redcat categories.
Generally any attribute of the cadet population that you may want to proportionally distribute, can be taken into a
subset here with the setof function supported by OPTMODEL.

set CA = setof{i in B: BR[i] eq 'IN' OR BR[i] eq 'AR' OR BR[i] eq 'FA'};
set NCA = setof{i in B: BR[i] ne 'IN' AND BR[i] ne 'AR' AND BR[i] ne 'FA'};

print{i in CA} BR[i];
print{i in NCA} BR[i];

var x{B,C} >= 0;

Using the decision variables in the x index set and the scores in the arcs index set create a maximization equation.

maximize total_score = sum{i in B, j in C}arc[i,j]*x[i,j];
constraint supply{j in C}: sum{i in B}x[i,j]=1;
constraint demand{i in B}: sum{j in C}x[i,j]>=goalnbr[i];
constraint fems_no_ca{i in CA}: sum{j in F}x[i,j]=0;
/*constraint fcadem{i in B}: sum{j in F}x[i,j]>=femgoals[i];
constraint quality{i in B}: sum{j in C}omsnbr[j]*x[i,j]>=qgoals[i];
constraint mindem{i in B}: sum{j in M}x[i,j]>=mingoals[i];
constraint min2dem{i in B}: sum{j in R2}x[i,j]>=min2goals[i];
constraint min3dem{i in B}: sum{j in R3}x[i,j]>=min3goals[i];
constraint min4dem{i in B}: sum{j in R4}x[i,j]>=min4goals[i];
constraint min5dem{i in B}: sum{j in R5}x[i,j]>=min5goals[i];
constraint a1type{i in B}: sum{j in A1}x[i,j]>=a1goals[i];
constraint a2type{i in B}: sum{j in A2}x[i,j]>=a2goals[i];
constraint a3type{i in B}: sum{j in A3}x[i,j]>=a3goals[i];
constraint a4type{i in B}: sum{j in A4}x[i,j]>=a4goals[i];*/
solve;

Take the x set of decision variables that are greater then zero and place the assignment, rank (here cadet number),
arc scores, etc… and place those values in a data set called solt.

/* print x; */
create data solt from 
[B C]={i in B, j in C: x[i,j]>0} BR[i] rank[j] arc[i,j] 
BR4[j] BR5[j] omsnbr[j];
quit;

The data set solt (temporary solution) is now available to support analysis and expansion. The code below
categorizes the result and assigns a random number to each assignment to support disambiguation of results.

data sol;
set solt(rename=(BR=assigned arc=score));
choice = '6other';
if assigned = br1 then choice = '1st';
else if assigned = br2 then choice = '2nd';
else if assigned = br3 then choice = '3rd';
else if assigned = br4 then choice = '4th';
else if assigned = br5 then choice = '5th';
_random = RANUNI(0);
rnd = put(_random,10.8);
rnk = put(rank,6.);
obs = put(_N_,6.);
scorec=put(score,10.8);
run;

Some output from this data set is shown below in Figure 13 and you can see that the top ranked cadets are generally getting their 1st choice assigned to them, demand is met, and satisfaction is 96.817%.

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>assigned rank</th>
<th>score</th>
<th>ac</th>
<th>SEX</th>
<th>OMS</th>
<th>BR1</th>
<th>BR2</th>
<th>BR3</th>
<th>BR4</th>
<th>BR5</th>
<th>choice</th>
<th>Rnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>IN 1</td>
<td>5</td>
<td>1</td>
<td>M</td>
<td>97.211 IN EN FA MP SC 1st 0.746979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>AV 2</td>
<td>2.5</td>
<td>2</td>
<td>F</td>
<td>96.8591 AV AG FI MS MI 1st 0.749089</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>AV 3</td>
<td>1.66667</td>
<td>2</td>
<td>M</td>
<td>96.693 AV MS AR MI IN 1st 0.776854</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>AV 4</td>
<td>1.25</td>
<td>4</td>
<td>M</td>
<td>96.5456 AV EN EN FA AR 1st 0.691201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>IN 5</td>
<td>1</td>
<td>1</td>
<td>M</td>
<td>96.2215 IN MI EN MP AR 1st 0.729527</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>EN 6</td>
<td>0.83333</td>
<td>2</td>
<td>M</td>
<td>95.9808 EN MI IN AR MS 1st 0.748766</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>MP 7</td>
<td>0.71429</td>
<td>1</td>
<td>M</td>
<td>95.5532 MP EN MI AR FA 1st 0.87659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>IN 8</td>
<td>0.625</td>
<td>4</td>
<td>M</td>
<td>95.2922 IN AR EN MI OD 1st 0.979897</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>EN 9</td>
<td>0.55556</td>
<td>1</td>
<td>M</td>
<td>94.8416 EN FI MI SC AR 1st 0.861697</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>MI 10</td>
<td>0.5</td>
<td>1</td>
<td>F</td>
<td>94.7545 MI MS EN FI AD 1st 0.724443</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demand (Goal) Cadet Satisfaction (1st, 2nd, or 3rd preference matched)

<table>
<thead>
<tr>
<th>BR</th>
<th>ASSIGNED</th>
<th>PERCENT</th>
<th>GOAL</th>
<th>CHOICE</th>
<th>COUNT</th>
<th>SATISFIED</th>
<th>CUMULATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>82</td>
<td>3.222</td>
<td>82</td>
<td>1st</td>
<td>1569</td>
<td>61.6503</td>
<td>61.65</td>
</tr>
<tr>
<td>AG</td>
<td>144</td>
<td>5.6582</td>
<td>144</td>
<td>2nd</td>
<td>644</td>
<td>25.3045</td>
<td>86.955</td>
</tr>
<tr>
<td>AR</td>
<td>128</td>
<td>5.0295</td>
<td>128</td>
<td>3rd</td>
<td>251</td>
<td>9.8625</td>
<td>96.817</td>
</tr>
<tr>
<td>AV</td>
<td>146</td>
<td>5.7367</td>
<td>146</td>
<td>4th</td>
<td>41</td>
<td>1.611</td>
<td>98.428</td>
</tr>
<tr>
<td>CM</td>
<td>67</td>
<td>2.6326</td>
<td>67</td>
<td>5th</td>
<td>14</td>
<td>0.5501</td>
<td>98.978</td>
</tr>
<tr>
<td>EN</td>
<td>189</td>
<td>7.4263</td>
<td>189</td>
<td>6other</td>
<td>26</td>
<td>1.0216</td>
<td>100</td>
</tr>
<tr>
<td>FA</td>
<td>233</td>
<td>9.1552</td>
<td>233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>35</td>
<td>1.3752</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>281</td>
<td>11.0413</td>
<td>281</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td>363</td>
<td>14.2633</td>
<td>363</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>100</td>
<td>3.9293</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>208</td>
<td>8.1729</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QM</td>
<td>164</td>
<td>6.444</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>255</td>
<td>10.0196</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>150</td>
<td>5.8939</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 13, Assignments summary from PROC OPTMODEL

Now let’s add in some more constraints. An example of a proportional distribution constraint is shown in the code above (page 9) and below. To enable the female proportional distribution constraint in the problem above, we uncomment this constraint and re-run the model.

```plaintext
constraint fcadem{i in B}: sum{j in F}x[i,j]>=femgoals[i];
```

Note that the FGOAL numbers are calculated by the counting sql statements in the first section of the code above where we loaded the text files into datasets and extended those datasets. The specific lines that calculated femgoals are shown below.

```plaintext
proc sql; select count(*) as cnt into :all_cnt from cadets; quit;
proc sql; select count(*) into :fem_cnt from cadets where SEX='F'; quit;
proc sql; select sum(goalnbr) as cnt into :ca_cnt from goalst where BR in ('IN','AR','FA'); quit;
data goals;
 set goalst;
 femgoals=round(goalnbr * &fem_cnt/(&all_cnt-&ca_cnt),1);
 if BR in ('IN' 'AR' 'FA') then femgoals = 0; ...
run;
```
Some output from this run is shown below in Figure 14 and you can see effects of adding the gender proportional distribution constraint, demand is met, satisfaction is 95.678%.

<table>
<thead>
<tr>
<th>Female distribution</th>
<th>After constraint</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBR ASGN FEMS FGOAL DELTA</td>
<td>BBR ASGN FEMS FGOAL DELTA</td>
<td>CHOICE CUMULATIVE</td>
</tr>
<tr>
<td>AD 82 15 15 0</td>
<td>AD 82 15 15 0</td>
<td>1st 60.629</td>
</tr>
<tr>
<td>AG 144 69 26 43</td>
<td>AG 144 26 26 0</td>
<td>2nd 85.383</td>
</tr>
<tr>
<td>AR 128 0 0 0</td>
<td>AR 128 0 0 0</td>
<td>3rd 95.678</td>
</tr>
<tr>
<td>AV 146 15 26 -11</td>
<td>AV 146 26 26 0</td>
<td>4th 97.957</td>
</tr>
<tr>
<td>CM 67 10 12 -2</td>
<td>CM 67 12 12 0</td>
<td>5th 98.546</td>
</tr>
<tr>
<td>EN 189 23 34 -11</td>
<td>EN 189 34 34 0</td>
<td>6th 100</td>
</tr>
<tr>
<td>FA 233 0 0 0</td>
<td>FA 233 0 0 0</td>
<td>CHOICE CUMULATIVE</td>
</tr>
<tr>
<td>FI 35 4 6 -2</td>
<td>FI 35 6 6 0</td>
<td>1st 60.629</td>
</tr>
<tr>
<td>IN 282 0 0 0</td>
<td>IN 282 0 0 0</td>
<td>2nd 85.383</td>
</tr>
<tr>
<td>MI 362 62 65 0</td>
<td>MI 362 65 65 0</td>
<td>3rd 95.678</td>
</tr>
<tr>
<td>MP 100 22 18 4</td>
<td>MP 100 18 18 0</td>
<td>4th 97.957</td>
</tr>
<tr>
<td>MS 0 0 0 0</td>
<td>MS 0 0 0 0</td>
<td>5th 98.546</td>
</tr>
<tr>
<td>OD 208 25 37 -12</td>
<td>OD 208 37 37 0</td>
<td>6th 100</td>
</tr>
<tr>
<td>QM 164 43 29 14</td>
<td>QM 164 29 29 0</td>
<td>CHOICE CUMULATIVE</td>
</tr>
<tr>
<td>SC 255 27 46 -19</td>
<td>SC 255 46 46 0</td>
<td>1st 60.629</td>
</tr>
<tr>
<td>TC 150 26 27 -1</td>
<td>TC 150 27 27 0</td>
<td>2nd 85.383</td>
</tr>
</tbody>
</table>

Figure 14, Distribution of females and effects on satisfaction.

An example of a demand side constraint (called a ‘side constraint’ in NETFLOW) is demonstrated here using the OMS scores of each candidate to calculate the average OMS score of each branch (demand side) after the assignments are made. The objective of such a constraint will be to make the average OMS scores of each branch assignment more nearly equal so that one branch does not get a disproportionate share low or high scoring cadets.

The code for the proc sql ‘counting’ and calculations to do support this demand side constraint is shown below. Note that the problem will fail if you demand that the average OMS score per branch is exactly equal to the overall cadet sample average, so we need to ‘factor back from 1’ to get a slightly lower quality goal per branch.

```
proc sql; select avg(omsnbr) into :avg_oms from cadets; quit;

data goals;
data goalst;
set goalst;
qgoals=0.998*goalnbr*&avg_oms; ... run;
```

The ‘side constraint’ simply sums the assigned cadets OMS scores to satisfy the constraint below.

```
constraint quality{i in B}: sum{j in C}omsnbr[j]*x[i,j]>=qgoals[i];
```

The result of re-running the problem with these constraints is shown below in Figure 15. You can see from figures 14 and 15 that as you add in constraints to shape the assignments with the additional constraints of proportionally distributing females or more evenly distributing OMS scores among the branches, our ability to satisfy cadets and meet the demand constraint is degraded (about 1.3% for the female proportional distribution and about 5% for the quality constraint). Additionally, for the quality ‘side constraint’ our ability to meet the demand is degraded, but the SAS facility supports any additional logic necessary to disambiguate fractional assignments (an exercise left for the reader, but fully supported by the details in this document (see the random number added to the sol data set earlier)).
### CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Mike Grierson  
mcg@mcg-ct.com  
www.mcg-ct.com

see more about this presentation at [http://www.sascommunity.org/A_Network_Optimization_Solution_Using_SAS/OR_Tools_for_the_Department_of_the_Army.Branching_Problem](http://www.sascommunity.org/A_Network_Optimization_Solution_Using_SAS/OR_Tools_for_the_Department_of_the_Army.Branching_Problem)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

---
