Award Number: W81XWH-05-1-0593

TITLE: Prostate Cancer Evaluation: Design, Synthesis and Evaluation of Novel Enzyme-Activated Proton MRI Contrast Agents

PRINCIPAL INVESTIGATOR: Jian-Xin Yu, Ph.D.

CONTRACTING ORGANIZATION: The University of Texas Southwestern Medical Center at Dallas Dallas, TX 75390-9058

REPORT DATE: October 2009

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

✓ Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
1. REPORT DATE (DD-MM-YYYY)
01-10-2009

2. REPORT TYPE
Annual

3. DATES COVERED (From - To)
15 SEP 2008 - 14 SEP 2009

4. TITLE AND SUBTITLE
Prostate Cancer Evaluation: Design, Synthesis and Evaluation of Novel Enzyme-Activated Proton MRI Contrast Agents

E-Mail:

6. AUTHOR(S)
Jian-Xin Yu, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Texas Southwestern Medical Center at Dallas
Dallas, TX 75390-9058

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The lacZ gene encoding E. coli beta-gal has already been recognized as the most commonly used reporter system in cancer gene therapy. Moreover, prostate-specific membrane antigen (PSMA) has been identified as an ideal antigenic target in prostate cancer. We propose to develop a novel class of Gd(III)-based MRI contrast agents for in vivo detection of beta-gal or PSMA activity. This new concept of the Gd(III)-based MRI contrast agents is composed of three moieties: (A) a signal enhancement group, such as Gd-DOTA or Gd- PCTA; (B) an Fe(III) chelating group; (C) beta-D-galactose or glutamate. Following cleavage by lacZ transgene or PSMA in prostate cancer cells, the released, activated aglycone Fe(III)-ligand will spontaneously trap endogenous Fe(III) at the site of enzyme activity forming a highly stable complex, to restrict motion of the Gd(III) chelates enhancing relaxivity and providing local contrast accumulation. We plan to synthesize 8 novel MRI contrast agents for imaging beta-gal or PSMA activity in prostate cancer cell culture, explore the feasibility of applying the most promising analogies to cells grown in vivo in mice and rats.

15. SUBJECT TERMS
Prostate Cancer Evaluation, Contrast Agent, Synthesis, MRI, Gene Expression, Gene Therapy, in vivo Cancer Imaging, lacZ Gene, beta-Galactosidase, PSMA, NAALDase

16. SECURITY CLASSIFICATION OF:

a. REPORT	U
b. ABSTRACT	U
c. THIS PAGE	U

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

22

19. TELEPHONE NUMBER (include area code)

USAMRMC
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>8</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>12</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>13</td>
</tr>
<tr>
<td>Conclusion</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>14</td>
</tr>
<tr>
<td>Appendices</td>
<td>20</td>
</tr>
</tbody>
</table>
INTRODUCTION

Prostate cancer is the most frequently diagnosed cancer and the leading cause of cancer death in men in the United States, with an estimated 218,890 new cases and 27,050 deaths in 2007.[1,2] Gene therapy has emerged as a potentially promising strategy for treatment of prostate cancer.[3-15] The prostate is particularly amenable to gene therapy.[11-16] However, there are major issues in terms of assessing the delivery to target tissue, assessing the uniformity (versus heterogeneity) of biodistribution and determining whether the genes are expressed.[15-33] A viral construct is often readministered on successive occasions, but this should optimally be timed to coincide with loss of expression. Inevitably gene therapy has associated risks, and thus non-invasive in vivo determining the duration of gene expression in an individual tumor could greatly enhance the viability of the approach.

Gene expression now is commonly monitored by in situ hybridization techniques or by introducing a marker gene to follow the regulation of a gene of interest. Since β-galactosidase (β-gal) activity is readily assessed by histology or in culture, in hosts as evolutionarily diverse as bacteria, yeast, and mammals, its introduction has become a standard means of assaying clonal insertion, transcriptional activation, protein expression, and protein interaction, lacZ gene encoding E. coli β-gal has already been recognized as the most commonly used reporter system.[34] However, the well-established chromogenic or fluorogenic substrates, relying on the hydrolysis by β-gal to release colorful compounds are limited to histology or in vitro assays.[35-39] Non-invasive in vivo detecting of transgene expression would be of considerable value in many ongoing and future clinical gene therapy trials.

The superb spatial resolution and the outstanding capacity of differentiating soft tissues have determined the widespread success of magnetic resonance imaging (MRI) in clinical diagnosis.[40] The contrast in an MR image is the result of a complex interplay of numerous factors, including the relative T₁ and T₂ relaxation times, proton density of the imaged tissues and instrumental parameters. It was shown that contrast agent causes a dramatic variation of the water proton relaxation rates, thus providing physiological information beyond the impressive anatomical resolution commonly obtained in the uncontrasted images. Contrast agents are widely used clinically to assess organ perfusion, disruption of the blood–brain barrier, occurrence of abnormalities in kidney clearance, and circulation issues.[40-44] The responsive MRI contrast agents holds great promise in the gene therapy arena.[45,46] The abilities of these contrast agents to relax water protons is triggered or enhanced greatly by recognition of a particular biomolecule opening up the possibility of developing MRI tests specific for biomarkers.
indicative of particular disease states and aiding in the early detection and diagnosis of tumors. Desreux et al [42,47] demonstrated that, by chelating Gd(phen)HDO3A with Fe(II) to form a highly stable tris-
complex, as shown in Figure 1, the relativity increased 145% at 20MHz and 37°C from 5.1mM⁻¹s⁻¹ per Gd(III) in Gd(phen)HDO3A form to 12.2 mM⁻¹s⁻¹ in the tris-complex. Desreux et al [42,47] also synthesized another iron-sensitive MRI contrast agent with a tris-hydroxamate (Figure 2). After the tris-
hydroxamate groups formed a chelate with Fe(III), free rotation at the Gd(III) centers was restricted, thereby increasing relaxivity by 57% from 5.4 to 8.5mM⁻¹s⁻¹ at 20 MHz.

![Figure 1. The iron(II)-sensitive MRI agent Gd(phen)HDO3A](image)

![Figure 2. The iron(III)-sensitive MRI agent Gd(III)-Trishydroxamic acid](image)

Iron is a critically important metal ion for a wide variety of cellular events.[48] Tumor cells, as compared with their normal counterparts, frequently exhibit increased uptake and utilization of iron, as evidenced by an increase in transferrin receptors at the cell surface.[49-51] Additionally, cancer cells are sensitive to the effects of iron chelators because of the critical requirement for iron in proteins that play essential roles in DNA synthesis and energy production.[52,53] Such studies have led to iron chelation therapy to clinically treat some tumors.[54-58]

Based on the MRI contrast agents findings and the biologic features of tumor, we have proposed in this project a novel class of enzyme activated Gd³⁺-based MRI contrast agent for in vivo detection of β-gal activity, in which we try to combine all means of reaching the highest possible relaxivities (Figure 3).[42,47]

Additionally, prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein with enzymatic activities: N-acetylated α-linked L-amino dipeptidase (NAALADase) and γ-glutamyl
carboxypeptidase (folate hydrolase). Studies with the monoclonal antibodies have demonstrated that PSMA is the most well-established, highly restricted prostate cancer cell surface antigen, it is expressed at high density on the cell membrane of all prostate cancers. The high prostate tissue specificity of PSMA has been identified as an ideal therapeutic and diagnostic target for prostate cancer, this potential was exemplified by the recent FDA approval of an 111In-labeled PSMA monoclonal antibody (Prostascint®) for diagnostic imaging of prostate cancer. Furthermore, phase I and II trials have begun using immunotherapy directed against PSMA. By introducing γ-glutamate residue instead of D-galactose in our proposed above new mechanism diagram, we intend to develop a novel class of Gd(III)-based MRI contrast agents for in vivo imaging prostate tumor through PSMA activated in situ Fe$^{3+}$-trapped MRI contrast agent formation (Figure 4).

Figure 3. Mechanism of proposed new platform for in vivo detection of lacZ gene expression through β-gal activated in situ Fe$^{3+}$-trapped MRI contrast agent formation.

Figure 4. Proposed new mechanism for in vivo imaging prostate tumor through PSMA activated in situ Fe$^{3+}$-trapped MRI contrast agent formation.

Especially, PSMA has a large extracellular domain, so the expression of PSMA tethered to the surface of the prostate cancer cells makes that the novel peptide-based MRI contrast agents can be targeted for activation within the extracellular fluid of prostate cancers and overcomes the need for a peptide-based MRI contrast agent to penetrate the tumor cell membrane, thus, providing in vivo prostate
Prostate Cancer Evaluation: Design, Synthesis and Evaluation of Novel Enzyme-Activated 1H MRI Contrast Agents

cancer imaging through an extracellular MRI approach. The concern of permeability is one of the greatest challenges in the development of in vivo MRI contrast agents.\[72\]

Accordingly, depending upon the enzyme sources either being the lacZ transgene or the PSMA from prostate tumors, this new platform could provide in vivo lacZ gene expression assay or in vivo prostate cancer imaging (in particular, through extracellular contrast agents), with combining all the approaches of reaching the highest possible relaxivities.\[42,47,72\] Furthermore, this new class of responsive MRI contrast agent is composed of three functional moieties, in which the signal enhancing and Fe$^{3+}$ chelating parts are flexible allowing modification in a search for ideal Fe$^{3+}$-trapped MRI contrast agents. Importantly, the combination of three functional moieties is based on the clinically applied strategies on cancer therapy. These facts strongly suggest the potential of the proposal to future clinical application.

Most recently, Merbach et al [73-76] observed the remarkably high T_1 relaxivity gain by the heterometallic, self-assembled metallostar formation with six efficiently relaxing GdIII centers from (tpy-DTTA)Gd(H$_2$O) with 7.3mM$^{-1}$s$^{-1}$ to $\{\text{Fe}^{II}[\text{Gd}^{III}_2(\text{tpy-DTTA})_2(\text{H}_2\text{O})_4]_3\}^4^+$ with 15.7mM$^{-1}$s$^{-1}$ at 20MHz and 37°C (Figures 5), significantly, their detailed studies on structure and dynamics of the trinuclear complex $\{\text{Fe}^{II}[\text{Gd}^{III}_2(\text{tpy-DTTA})_2(\text{H}_2\text{O})_4]_3\}^4^+$ indicate that the heterometallic self-assemblies attain high T_1 relaxivities by influencing three factors: water exchange, rotation, and electron relaxation, which are fully consistent with the expecting results shown as above in Figures 3 and 4, the effectiveness of contrast agents can be increased by restricting the motion of Gd(III) chelates by linking them rigidly to macromolecules through covalent or non-covalent bonds, by an improvement of their intrinsic relaxivity or by attaching several paramagnetic entities to biological or synthetic oligomers. Obviously, these most recently comprehensive investigations as relevant evidences strongly support for our current proposal.

STATEMENT OF WORK

Specific Aim 1 Design and synthesize model “smart” MRI contrast agents to report β-gal or PSMA activities with the ability of trapping Fe$^{3+}$ ion.

Task 1 Design and optimization of synthetic strategies for reporter molecules. (Months 1-18)

Task 2 Structural characterizations of the synthesized molecules. (Months 4-20)
Specific Aim 2 Test the properties of molecules in solution and in vitro with cultured prostate cancer cells.

Task 3 Evaluation the basic properties of the agents in solution. (Months 20-22)

Task 4 Evaluation of the properties of the optimal molecules in vitro with cultured prostate cancer cells. (Months 23-25)

Specific Aim 3 Scale up synthesis of the most promising MRI contrast agent(s) and apply to animal investigations.

Task 5 Scale up synthesis of the most promising 1H MRI contrast agent(s). (Months 26-28)

Task 6 Apply the most promising 1H MRI contrast agent(s) to assess β-gal transfection efficiency, lacZ gene expression (spatial and temporal) in prostate tumors in vivo (48 mice + 48 rats). (Months 29-35)

Task 7 Test dosing protocols, timing, MR detection protocols (48 mice) (Months 29-35)

Task 8 Prepare manuscripts and final report (Month 36)

BODY

In this no-cost extension year, our work continued followed the research plan of the approved proposal W81XWH-05-1-0593 on: Task 1 Design and optimization of synthetic strategies for reporter molecules; Task 2 Structural characterizations of the synthesized molecules; Task 3 Evaluation the basic properties of the agents in solution; and Task 4 Evaluation of the properties of the optimal molecules in vitro with cultured prostate cancer cells; Task 5 Scale up synthesis of the most promising 1H MRI contrast agent(s); Task 6 Apply the most promising 1H MRI contrast agent(s) to assess β-gal transfection efficiency, lacZ gene expression (spatial and temporal) in prostate tumors in vivo; Task 7 Test dosing protocols, timing, MR detection protocols (48 mice).

Through three years supported by DOD W81XWH-05-1-0593, we have successfully obtained the target reporters M_1, M_3, M_5, M_7, M_9 and M_{10} designed in the proposal by the modified synthetic strategies and routes (see Figure 1). The MRI evaluation of the reporter molecules M_1, M_3, M_5, M_7, M_9 and M_{10}, respectively, in sodium phosphate buffer solution (PBS) (0.1 M, pH=7.4) in the presence of ferric ammonia citrate (FAC) with β-galactosidase E801A indicated that: (1) the reporter molecules M_1, M_3, M_5, M_7 can not be hydrolyzed by β-galactosidase E801A, so no MRI contrast changes before and after addition of β-galactosidase E801A can be seen; (2) only reporter molecules M_9 and M_{10} can be hydrolyzed by β-galactosidase E801A in the presence of FAC in PBS (0.1 M, pH=7.4), producing
obvious MRI contrast changes before and after reaction with β-galactosidase E801A (see Figure 2), it implies that the released aglycone including the activated Fe$^{3+}$-ligand and MRI signal enhancement group spontaneously traps Fe$^{3+}$ in the solution forming a highly stable complex, then restricting the motion of the Gd$^{3+}$ chelates enhancing relaxivity.

Figure 1. The Structures of M1, M3, M5 and M9 and M10

Figure 2. T_1-weighted (TR/TE 250/12 ms) MR images of solutions and the signal intensity in test tubes at 4.7 T MR scanner: (A) PBS with M9 and FAC; (B) PBS with M9, FAC and β-galactosidase E801A; (C) PBS with M10 and FAC; (D) PBS with M10, FAC and β-galactosidase E801A.
In Vitro MRI Studies of M₉ and M₁₀

(1) Cell preparation (a) Stably transfected PC3 cell line: *E. coli lacZ* gene (from pSV-β-gal vector, Promega, Madison, WI) was inserted into high expression human cytomegalovirus (CMV) immediate-early enhancer/promoter vector pHCMV (Gene Therapy Systems, San Diego, CA) giving a recombinant vector pHCMV/lacZ, which was used to transfect PC3 cells using GenePORTER2 (Gene Therapy Systems). Cells were grown in DMEM (Dulbecco's Modification of Eagle's Medium, Mediatech, Inc, Herndon, VA), 10% FBS (Fetal bovine serum, Hyclone, Logan, UT) with 1% Penicillin-streptomycin Solution (Mediatech). The highest β-gal expressing colony was selected using G-418 disulfate (C₂₀H₄₀N₄O₁₀. 2H₂SO₄, Research Products International Corp, Mt. Prospect, IL) (800 μg/ml), which was also included for routine culture (200 μg/ml). (b) X-gal and S-gal staining for β-gal: cells were fixed in PBS plus 0.5% glutaraldehyde (5 min) and rinsed in PBS prior to staining. Staining was performed using standard procedures for 2 hours at 37 °C in PBS plus 1 mg/ml X-gal (Sigma, St. Louis, MO), 1 mM MgCl₂, 5 mM K₃Fe(CN)₆, and 5 mM K₄Fe(CN)₆ or with 1.5 mg/ml S-gal (Sigma) and 2.5 mg/ml FAC (see Figure 3). (c) β-Gal activity assay: The β-gal activity of tumor cells and tissues in mice was measured using the β-gal assay kit (Promega, Madison, WI) with yellow o-nitrophenyl β-D-galactopyranoside. (d) Western blot analysis: Protein was extracted from PC3 tumor cells and was quantified by a protein assay (Bio-Rad, Hercules, CA) based on the Bradford method. Each well was loaded with 30μg protein and separated by 10% SDS-PAGE (Nu-PAGE) and transferred to a polyvinylidene fluoride (PVDF) membrane. Primary monoclonal anti-β-gal antibody (Promega) and

Figure 3 Generation of PC3 cells stably expressing of β-gal. (A) Map of recombinant lacZ vector (pHCMV/lacZ). (B) Western blot: cell extracts of two transfected lines PC3-lacZ1 (lane 1) and PC3-lacZ (lane 3), together with PC3-WT (lanes 2 and 4) were examined. (C) PC3 wild-type and PC3-lacZ cells were stained using X-gal and S-gal: over 90% of PC3-lacZ cells were stained blue or black, respectively, while the PC3 wild type cells did not stain.
anti-actin antibody (Sigma) were used as probes at a dilution of 1:5000, and reacting protein was detected using a horseradish peroxidase-conjugated secondary antibody and ECL detection (Amersham, Piscataway, NJ).

(2) **In Vitro MRI** The reporter molecules M_9 and M_{10} (6 μmol) each in 1:1 DMSO/PBS was added to suspensions of 5×10^6 PC3 wild type and PC3-lacZ cells in PBS (1.0 mL) and FAC (3 μmol) in wells and maintained at 37 °C. MRI experiments were performed on a 4.7 T Varian Unity INOVA spectrometer. **Figure 5** showed the *in vitro* MR images of M_9 and M_{10} with lacZ transfected prostate tumor cells, yielding obvious MRI contrast changes between in WT and lacZ transfected PC3 prostate tumor cells, indicating that M_9 and M_{10} both can penetrate prostate tumor PC3 cell membrane and have no apparent cytotoxicity and no physiological perturbation effects on WT and lacZ transfected PC3 cells.

In Vivo MRI Studies of M_9 and M_{10}

(1) **Animal model** All *in vivo* MRI studies were performed with approval from the Institutional Animal Care and Use Committee (IACUC). Wild type and stably transfected lacZ PC3 cells were implanted subcutaneously in the left and right thighs of mice, respectively, when the tumors reached ~0.8 cm in diameter, the mouse was anesthetized (isoflurane/air 2%/98%) and placed into animal coil for imaging. The animal temperature was maintained at 37 °C by a warm pad with circulating water. Histology analysis confirmed that PC3-lacZ tumor section showed over 90% of tissue stained blue for β-gal, while PC3-WT tumor histological section showed little or no blue stain (**Figure 6**).

(2) **In Vivo MRI with i.v. injection** Mice bearing PC3-WT and PC3-lacZ tumors were imaged on a 4.7 T Varian Unity INOVA spectrometer. T1-weighted transaxial images were obtained before and after intravenous injection of the mixture of 0.4 mmol/kg M_9 and M_{10} and FAC. Postcontrast scans were obtained every 5 min for one and half hours. For both reporters M_9 and M_{10}, the MR images of animals showed that there are no time-signal intensity changes between PC3-WT and PC3-lacZ tumors before and after M_9 and M_{10}.
M₀ and M₁₀ can either be washed out or metabolized very quickly, and can’t reach to PC3-WT and PC3-lacZ tumors on the thighs with enough amount. Also, we found that mice all died one and half-hours later after intravenous injection of M₉. (3) *In Vivo MRI with direct injection into tumors* However, if a solution of M₁₀ (0.4 mmol/kg) and FAC (DMSO/PBS 1:1 V/V*) was injected directly into the tumors in a “fan” pattern, strong contrast was detected in the lacZ expressing PC3 tumors (Figure 8).

The further *in vivo* MRI evaluation of M₉ and M₁₀ with lacZ transfected prostate tumor is still ongoing. In December 2008, my lab was relocated to a new building, which required remodeling of the new lab and repairs to the refrigeration system and the vacuum instrument. In addition, the Varian unity INOVA 4.7T system was not in service from January to April 2009, and therefore some proposed experiments could not be completed on time. Accordingly, we requested another one-year extension for this project with the remaining funds carried over (no additional cost extension). Based on the *in vitro* and *in vivo* MRI evaluation, we are confident that we will be able to carry out the entire studies proposed in W81XWH-05-1-0593.

Research Accomplishments

1. Finished the *in vitro* evaluation of the reporter molecules M₉ and M₁₀;
2. Evaluated the reporter molecules M₉ and M₁₀ *in vivo*, respectively, and the results demonstrated this novel mechanism for *in vivo* prostate cancer imaging and evaluation of prostate cancer gene therapy as described in W81XWH-05-1-0593.
REPORTABLE OUTCOMES

Two abstracts have been accepted for presentation on the World Molecular Imaging Congress in Montreal, Canada, Sept. 23-26, 2009.

CONCLUSIONS

Prostate cancer is the most commonly diagnosed cancer and the second most common cause of cancer death in men in the United States. The advent of effective screening measures can sharply decrease the mortality of prostate cancer through detecting this disease at an earlier stage. However, the evidence for mortality benefit from prostate cancer screening has been disappointing to date. Expanding knowledge of prostate cancer biology with combination of imaging technologies would be of considerable value in many ongoing and future clinical prostate cancer diagnosis and gene therapy trials.

Based on the biologic features of prostate cancer, we proposed in this project a new approach for in vivo lacZ gene expression assay or in vivo prostate cancer imaging. The ultimate objective is to demonstrate the utility and reliability of this new approach to measure β-gal or PSMA activities in vivo. We have accomplished a series of target molecules M1, M3, M5, M7, M9 and M10, and verified by NMR data. Strong MRI contrast changes of target molecules M9 and M10 for detection lacZ in vitro and in vivo demonstrated this novel mechanism described in W81XWH-05-1-0593. We are now focusing on the further in vivo studies.
REFERENCES

72. Louie AY, Meade TJ, 2000, Recent advances in MRI: Novel contrast agents shed light on in-vivo biochemistry, TiBS, 7-11.

APPENDICES

Prostate Cancer Evaluation: Design, Synthesis and Evaluation of Novel Enzyme-Activated 1H MRI Contrast Agents

MOLECULAR DESIGN

RESULTS

CONCLUSIONS

REFERENCES

ACKNOWLEDGEMENT
Prostate Cancer Evaluation: Design, Synthesis and Evaluation of Novel Enzyme-Activated 1H MRI Contrast Agents

Introduction

Gene therapy holds great promise for treating cancer and has been successfully exploited in several clinical trials. A major current obstacle to its implementation is the establishment of a method of therapeutic gene expression in vivo in a noninvasive and biologically relevant manner. The in vivo gene delivery (Gid-gene delivery) has been recognized as the most attractive approach to date for clinical gene therapy trials. Various groups have pursued innovative approaches to achieving this goal by utilizing pulsed-field-enhanced contrast (PEEC) or WP MRI, spectroscopic 1H/MRI and multispectral imaging. The current report describes a novel approach to the responsive Gd-based 2D-MRI agent.

Preliminary results demonstrated that, by chelating Gd-Chloride(EDTA) with FA(II) to form a highly stable water-soluble, the relaxivity increased 2.5-fold in 20MHz and 1.5-fold in 20MHz, respectively. The newly synthesized 2D-MRI agent exhibited significantly higher relaxivity in the moderate molecular weight. Thus, 2D-MRI is a critically important modality for the diagnosis of solid tumors.

Results

Ligand structure (a). Gd-DOTA and (b) 2D-MRI agent synthesized. The newly synthesized 2D-MRI agent exhibited significantly higher relaxivity in vivo than that of 2D-MRI agent.

Design

Based on the results, we propose a new class of enzyme-activated 1H/MRI contrast agents for detection of 1H relaxivity. The synthesis of the ligand and the evaluation of the agent has been successful, and the evaluation of the agent with 2D-MRI shows that the ligand sufficiently increases the relaxivity of Gd-DOTA. However, for use in vivo, the stability of the ligand needs to be improved. Further studies in this area are ongoing.

Conclusions

We propose a novel class of enzyme-activated 1H/MRI contrast agents for detection of 1H relaxivity. The synthesis of the ligand and the evaluation of the agent has been successful, and the evaluation of the agent with 2D-MRI shows that the ligand sufficiently increases the relaxivity of Gd-DOTA. However, for use in vivo, the stability of the ligand needs to be improved. Further studies in this area are ongoing.

References

Acknowledgements

This work is supported by NIH/NIDDK, National Cancer Institute, National Institute of Diabetes and Digestive and Kidney Diseases, and National Institutes of Health.