ISSUES IN STOCHASTIC SEARCH AND OPTIMIZATION

PerMIS 2004
NIST

James C. Spall
The Johns Hopkins University
Applied Physics Laboratory (JHU/APL)

james.spall@jhuapl.edu
Issues in Stochastic Search and Optimization

Johns Hopkins University, Applied Physics Laboratory (JHU/APL), 11100 Johns Hopkins Road, Laurel, MD, 20723

Proceedings of the 2004 Performance Metrics for Intelligent Systems Workshop (PerMIS ’04), Gaithersburg, MD on August 24-26 2004
Performance Metrics and Optimization

• How are performance metrics used?
 – Sensitivity studies
 – System design
 – Decision aid for strategic planning
 – Adapting system over time
 – Detecting instability; avoiding unstable performance
 – Evaluating system reliability
 – Design of experiments
 – Mathematical modeling and parameter estimation
 – And on and on….

• Most of above involve optimization

• **Claim:** Impossible to have a performance metrics conference w/o **seriously** considering optimization!
Search and Optimization Algorithms as Part of Problem Solving

- There exist many deterministic and stochastic algorithms
- Algorithms are \textit{part} of the broader solution
- Need clear understanding of problem structure, constraints, data characteristics, political and social context, limits of algorithms, etc.
- “Imagine how much money could be saved if truly appropriate techniques were applied that go beyond simple linear programming.” (Z. Michalewicz and D. Fogel, 2000)
 - Deeper understanding required to provide truly appropriate solutions; COTS usually not enough!
- Many (most?) real-world implementations involve stochastic effects
Potpourri of Problems Using Stochastic Search and Optimization

• Minimize the costs of shipping from production facilities to warehouses
• Maximize the probability of detecting an incoming warhead (vs. decoy) in a missile defense system
• Place sensors in manner to maximize useful information
• Determine the times to administer a sequence of drugs for maximum therapeutic effect
• Find the best red-yellow-green signal timings in an urban traffic network
• Determine the best schedule for use of laboratory facilities to serve an organization’s overall interests
Two Fundamental Problems of Interest

• Let Θ be the domain of allowable values for a vector θ
• θ represents a vector of “adjustables”
 – θ may be continuous or discrete (or both)
• Two fundamental problems of interest:

 Problem 1. Find the value(s) of a vector $\theta \in \Theta$ that minimize a scalar-valued loss function $L(\theta)$

 — or —

 Problem 2. Find the value(s) of $\theta \in \Theta$ that solve the equation $g(\theta) = 0$ for some vector-valued function $g(\theta)$

• Frequently (but not necessarily) $g(\theta) = \partial L(\theta)/\partial \theta$
Three Common Types of Loss Functions

Continuous

Discrete/
Continuous

Discrete
Stochastic Search and Optimization

• Focus here is on **stochastic** search and optimization:

 A. Random noise in input information (e.g., noisy measurements of \(L(\theta) \))

 — and/or —

 B. Injected randomness (Monte Carlo) in choice of algorithm iteration magnitude/direction

• Contrasts with deterministic methods
 – E.g., steepest descent, Newton-Raphson, etc.
 – Assume perfect information about \(L(\theta) \) (and its gradients)
 – Search magnitude/direction deterministic at each iteration

• Injected randomness (B) in search magnitude/direction can offer benefits in efficiency and robustness
 – E.g., Capabilities for global (vs. local) optimization
Some Popular Stochastic Search and Optimization Techniques

- Random search
- Stochastic approximation
 - Robbins-Monro and Kiefer-Wolfowitz
 - SPSA
 - NN backpropagation
 - Infinitesimal perturbation analysis
 - Recursive least squares
 - Many others
- Simulated annealing
- Genetic algorithms
- Evolutionary programs and strategies
- Reinforcement learning
- Markov chain Monte Carlo (MCMC)
- Etc.
Effects of Noise on Simple Optimization Problem
Example Search Path (2 variables): Steepest Descent with Noisy and Noise-Free Input
Example of Noisy Loss Measurements: Tracking Problem

• Consider tracking problem where controller and/or system depend on design parameters θ
 – E.g.: Missile guidance, robot arm manipulation, attaining macroeconomic target values, etc.

• Aim is to pick θ to minimize mean-squared error (MSE):
 \[L(\theta) = E\left(\|\text{actual output} - \text{desired output}\|^2\right) \]

• In general nonlinear and/or non-Gaussian systems, \textit{not possible} to compute $L(\theta)$

• Get \textit{observed} squared error $y(\theta) \equiv \| \cdot \|^2$ by running system

• Note that $y(\theta) = \| \cdot \|^2 = L(\theta) + \text{noise}$
 – Values of $y(\theta)$, not $L(\theta)$, used in optimization of θ
Example of Noisy Loss Measurements: Simulation-Based Optimization

- Have credible Monte Carlo simulation of real system
- Parameters θ in simulation have physical meaning in system
 - E.g.: θ is machine locations in plant layout, timing settings in traffic control, resource allocation in military operations, etc.
- Run simulation to determine best θ for use in real system
- Want to minimize average measure of performance $L(\theta)$
 - Let $y(\theta)$ represent one simulation output ($y(\theta) = L(\theta) + \text{noise}$)
Some Key Properties in Implementation and Evaluation of Stochastic Algorithms

• Algorithm comparisons via number of evaluations of $L(\theta)$ or $g(\theta)$ (not iterations)
 – Function evaluations typically represent major cost

• Curse of dimensionality
 – E.g.: If $\text{dim}(\theta) = 10$, each element of θ can take on 10 values.
 Take 10,000 random samples: $\text{Prob}(\text{finding one of 500 best } \theta) = 0.0005$
 – Above example would be even much harder with only noisy function measurements

• Constraints

• Limits of numerical comparisons
 – Avoid broad claims based on numerical studies
 – Best to combine theory and numerical analysis
Global vs. Local Solutions

• Global methods *tend* to have following characteristics:
 – Inefficient, especially for high-dimensional θ
 – Relatively difficult to use (e.g., require very careful selection of algorithm coefficients)
 – Shaky theoretical foundation for global convergence

• Much “hype” with many methods (genetic algorithm [GA] software advertisements):
 – “…can handle the most complex problems, including problems unsolvable by any other method.”
 – “…uses GAs to solve *any* optimization problem!”

• But there are *some* mathematically sound methods
 – E.g., *restricted settings* for GAs, simulated annealing, and SPSA
No Free Lunch Theorems

• Wolpert and Macready (1997) establish several “No Free Lunch” (NFL) Theorems for optimization

• NFL Theorems apply to settings where parameter set and set of loss function values are finite, discrete sets
 – Relevant for continuous θ problem when considering digital computer implementation
 – Results are valid for deterministic and stochastic settings

• Number of optimization problems—mappings from to set of loss values—is finite

• NFL Theorems state, in essence, that no one search algorithm is “best” for all problems
No Free Lunch Theorems—Basic Formulation

• Suppose that

\[N_{\theta} = \text{number of values of } \theta \]
\[N_L = \text{number of values of loss function} \]

• Then

\[\left(N_L \right)^{N_{\theta}} = \text{number of loss functions} \]

• There is a finite (but possibly huge) number of loss functions

• Basic form of NFL considers average performance over all loss functions
Illustration of No Free Lunch Theorems (Example 1.7 in ISSO)

- Three values of θ, two outcomes for noise free loss L
 - Eight possible mappings, hence eight optimization problems
- Mean loss across all problems is same regardless of θ; entries 1 or 2 in table below represent two possible L outcomes

<table>
<thead>
<tr>
<th>Map</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>θ_2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>θ_3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
No Free Lunch Theorems (cont’d)

• NFL Theorems state, in essence:

Averaging (uniformly) over all possible problems (loss functions L), all algorithms perform equally well

• In particular, if algorithm 1 performs better than algorithm 2 over some set of problems, then algorithm 2 performs better than algorithm 1 on another set of problems

Overall relative efficiency of two algorithms cannot be inferred from a few sample problems

• NFL theorems say nothing about specific algorithms on specific problems
Relative Convergence Rates of Deterministic and Stochastic Optimization

- Theoretical analysis based on convergence rates of iterates $\hat{\theta}_k$, where k is iteration counter.
- Let θ^* represent optimal value of θ.
- For deterministic optimization, a standard rate result is:
 \[\|\hat{\theta}_k - \theta^*\| = O(c^k), \; 0 < c < 1 \]

- Corresponding rate with noisy measurements:
 \[\|\hat{\theta}_k - \theta^*\| = O\left(\frac{1}{k^\lambda}\right), \; 0 < \lambda \leq \frac{1}{2} \]

- Stochastic rate inherently slower in theory and practice.
Concluding Remarks

- Stochastic search and optimization very widely used
 - Handles noise in function evaluations
 - Generally better for global optimization
 - Broader applicability to “non-nice” problems (robustness)
- Some challenges in practical problems
 - Noise dramatically affects convergence
 - Distinguishing global from local minima not generally easy
 - Curse of dimensionality
 - Choosing algorithm “tuning coefficients”
- Rarely sufficient to use theory for standard deterministic methods to characterize stochastic methods
- “No free lunch” theorems are barrier to exaggerated claims of power and efficiency of any specific algorithm
- Algorithms should be implemented in context: “Better a rough answer to the right question than an exact answer to the wrong one” (Lord Kelvin)
Selected References on Stochastic Optimization

Contact Info. and Related Web Sites

• *james.spall@jhuapl.edu*

• **www.jhuapl.edu/SPSA** (Web site on stochastic approximation algorithm)

• **www.jhuapl.edu/ISSO** (Web site on book *Introduction to Stochastic Search and Optimization*)