Award Number: W81XWH-06-1-0705

TITLE: Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer

PRINCIPAL INVESTIGATOR: Talmesha Richards

CONTRACTING ORGANIZATION: Johns Hopkins School of Medicine
Baltimore, MD 21231

REPORT DATE: September 2008

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Title and Subtitle: Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer

Abstract: Elevated levels of all three naturally occurring polyamines, spermine, spermidine and putrescine, have been found in breast cancer tissues. Polyamine analogues have been shown to inhibit cell growth and in some cases induce apoptosis. My studies have demonstrated the ability of PG-11144 and other oligoamines to inhibit cell growth in human breast cancer cell lines. These oligoamines can also suppress epidermal growth factor receptor (EGFR), human epidermal growth factor receptor-2 (HER2) and estrogen receptor(ER)-alpha protein in multiple human breast cancer cell lines. This downregulation occurred with the 24 hour treatment of T47D cells. These studies were extended to evaluate the effects of long term, low dose exposure of PG-11144 in T47D cells; downregulation was observed in HER family protein and RNA levels. This project will demonstrate that oligoamines are novel anti-HER family agents and oligoamine-induced down regulation of HER family members contributes to their cytotoxicity in human breast cancer cell lines. The completion of this project will also provide valuable information about the potential clinical application of oligoamines.

Subject Terms: Polyamines, polyamine analogues, human epidermal growth factor receptor (HER) family, epidermal growth factor receptor (EGFR)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>9</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>9</td>
</tr>
<tr>
<td>Conclusion</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>Appendices</td>
<td>N/A</td>
</tr>
</tbody>
</table>
INTRODUCTION

The polyamines, spermine, spermidine and putrescine, are naturally occurring aliphatic cations that are essential for normal cell growth and differentiation (1,2). A number of studies have shown that polyamines play a key role in carcinogenesis and malignant transformation (3,4), thus making the polyamine pathway a therapeutic target of interest. Increased levels of all three naturally occurring polyamines have been found in many types of cancers, including breast cancer (5). Polyamine analogues have been developed to mimic the three natural polyamines and exploit the self-regulatory properties of polyamines. Treatment of human breast cancer cell lines with polyamine analogues has been shown to inhibit cell growth and in some cases induce apoptosis (6-8). One subset of polyamine analogues are conformationally restricted and long chain analogues named oligoamines (9). Our laboratory has focused on the oligoamine, Progen (PG)-11144, because of its effects in human breast cancer cells. Our studies have shown that oligoamines, especially PG-11144, inhibit growth of human breast cancer cell lines in culture and in mouse xenograft models. My studies have demonstrated the ability of PG-11144 to downregulate two members of the human epidermal growth factor receptor (HER) family: epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). The overexpression of EGFR and HER2 is usually associated with more aggressive tumors and worse prognosis (10,11). Preliminary studies have have also shown that PG-11144 inhibits cell growth in human breast cancer cell lines. Thus, the hypothesis underlying this proposal is that oligoamines are novel anti-HER family agents and oligoamine-induced down regulation of HER family members contributes to their cytotoxicity in human breast cancer cell lines. The studies proposed here are designed to elucidate the molecular mechanisms by which polyamine analogues inhibit the expression and activity of the HER family. The results of these experiments will lead to a better understanding of the cytotoxic action of polyamine analogues against human breast cancer and provide valuable information about the potential clinical application of oligoamines.
BODY

Specific Aim 1: To investigate the mechanisms by which oligoamines downregulate EGFR and HER2 expression.

My studies have shown that the oligoamine, PG-11144, downregulates the expression of EGFR and HER2 protein in several human breast cancer cell lines as documented by Western blot analysis. In particular, this downregulation occurred with the 24 hour treatment of T47D cells. These studies were extended to evaluate the effects of long term, low dose exposure of PG-11144 in T47D cells. (Figure 1 and Figure 2).

![Western blot analysis of T47D breast cancer cell lines treated with low doses of PG-11144 for 96 hours. Antibodies specific for HER2 (185kDa), EGFR (170kDa), human epidermal growth factor receptor 4 (HER4) (180kDa) and estrogen receptor-alpha (ER-alpha) (66kDa) were used. Actin antibody was used as a control to ensure equal loading.](image-url)

Figure 1. Western blot analysis of T47D breast cancer cell lines treated with low doses of PG-11144 for 96 hours. Antibodies specific for HER2 (185kDa), EGFR (170kDa), human epidermal growth factor receptor 4 (HER4) (180kDa) and estrogen receptor-alpha (ER-alpha) (66kDa) were used. Actin antibody was used as a control to ensure equal loading.
96 hour 1μM treatment of T47D cells decreased HER2, EGFR, HER4 and ER-alpha expression. The effects of PG-11144 on other receptors, retinoic acid receptor beta (RARβ) and vitamin D receptor (VDR) were also evaluated.

The 96 hour low dosage treatment of T47D cells with PG-11144 does not decrease RARβ or VDR suggesting that the results in Figure 1 are not due non specific drug toxicity. The effect of the oligoamine, PG-11150, on 96 hour T47D cells on HER2 protein was examined.

Figure 2. Western blot analysis of T47D breast cancer cell lines treated with low doses of PG-11144 for 96 hours. Antibodies specific for RARβ (51kDa) and VDR (55kDa) were used. Actin antibody was used as a control to ensure equal loading.
Figure 3. Western blot analysis of T47D breast cancer cell lines treated with low doses of PG-11150 for 96 hours. An antibody specific for HER2 (185kDa) was used. Actin antibody was used as a control to ensure equal loading.

Like PG-11144, PG-11150 can decrease HER2 protein expression. However the downregulation is observed at a lower dosage, 0.5µM. Reverse transcriptase polymerase chain reaction (RT-PCR) experiments were performed to determine if messenger ribonucleic acid (mRNA) levels correlated with protein levels.

Figure 4: RT-PCR results of T47D cells treated with various doses of PG-11144. Ribonucleic acid (RNA) was isolated from oligoamine-treated cells using Trizol method. Moloney murine leukemia virus (M-MLV) reverse transcriptase was used to generate complementary deoxyribonucleic acid (cDNA), followed by polymerase chain reaction (PCR) to assess mRNA expression.

A decrease in both T47D HER2 and ER alpha mRNA was observed in long term, low dose PG-11144 exposure. A similar experiment was done with another oligoamine, PG-11150.
Figure 5: RT-PCR results of T47D cells treated with various doses of PG-11150. RNA was isolated from oligoamine-treated cells using Trizol method. M-MLV reverse transcriptase was used to generate cDNA, followed by PCR to assess mRNA expression.

Low doses of PG-11150 also has the ability to downregulate ER alpha mRNA with long exposure times. RT-PCR was performed on HER2 overexpressing SKBR3 cells treated with PG-11144.

Figure 6: RT-PCR results of SKBR3 cells treated with various doses of PG-11144. RNA was isolated from oligoamine-treated cells using Trizol method. M-MLV reverse transcriptase was used to generate cDNA, followed by PCR to assess mRNA expression.

In SKBR3 cells high dosage PG-11144 downregulates HER2 mRNA less effectively than low dosage PG-11144 in T47D cells. This may be due to the HER2 overexpression in SKBR3 cells. Real time polymerase chain reaction studies will be completed to quantify these results and examine the effects of oligoamines on other cell lines.

Specific Aim 2: To determine the role of EGFR and HER2 in oligoamine-induced cytotoxicity. Future experiments will address the goals set forth in this aim.
Specific Aim 3: To determine if oligoamines can overcome endocrine resistance.
Future experiments will address the goals set forth in this aim.

As a member of the Cellular and Molecular Graduate Program (CMM) I participate in CMM sponsored events including the CMM Fall Retreat and Distinguished Lecture Series. My formal training consists of courses addressing the fundamentals of cancer biology and novel approaches to cancer prevention and therapeutics, bi-weekly lab meetings to present results and discuss future directions and a weekly breast cancer translational research conference. I have also had the opportunity to present my research at Johns Hopkins events such as the CMM Retreat, Breast Cancer Program Seminar and the Breast Cancer Program Retreat.

KEY RESEARCH ACCOMPLISHMENTS
• Low dose, long term exposure of T47D cells to PG-11144 decreases ER-alpha protein along with multiple members of the HER family.
• Low dose, long term exposure of T47D cells to PG-11144 does not decrease the protein levels of other receptors such as RARβ and VDR.
• In T47D cells HER2 and ER alpha mRNA levels are downregulated with low dose, long term PG-11144 exposure.
• PG-11144 decreases HER2 mRNA levels in SKBR3 cells.

REPORTABLE OUTCOMES
Posters and Presentations:

Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer.

Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer.
Richards T. Breast Cancer Program Retreat, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, June 2008.

Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer.

Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer.
Richards T. Cellular and Molecular Medicine Program Fall Retreat, Johns Hopkins University, September 2008.
CONCLUSIONS

Low dose, long term exposure of T47D cells to PG-11144 decreases ER-alpha protein along with multiple members of the HER family. However, this decrease is not observed in protein levels of other receptors such as levels of other receptors such as RARβ and VDR. This result suggests that the effects seen on HER family members and ER-alpha is not a result of non-specific toxicity. In T47D cells, HER2 and ER alpha mRNA levels are also downregulated with low dose, long term PG-11144 exposure. PG-11144 also decreases HER2 mRNA levels in HER2 overexpressing SKBR3 cells. Further experiments will be completed to further assess the effects of oligoamines on human breast cancer cell lines and compare the effects of PG compounds on wild type MCF-7 and MCF-7 tamoxifen resistant lines. The completion of this project will lead to a better understanding of the cytotoxic action of polyamine analogues against human breast cancer and provide valuable information about the potential clinical application of oligoamines.
REFERENCES