Army Ground Vehicle Use of CFD and Challenges

Scott Shurin
586-282-8868
scott.shurin@us.army.mil
Army Ground Vehicle Use of CFD and Challenges

US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

The original document contains color images.
Outline

• TARDEC/CASSI Introduction
• Simulation in the Army
• General Challenges
• Types of Analyses
• Working with the Government
• Tank Automotive Research, Development and Engineering Center (TARDEC)
 – Develops, integrates, and sustains the technology for all manned and unmanned DOD ground systems
 – The main Research and Development Engineering (R&DE) organization for ground systems integration and technology

• Consists of Three Major Business Groups:
 – Engineering Business Group
 – Product Development Business Group
 – Research Business Group
 • Includes CASSI (Next Slide)
Simulation in the Army

• Why the Army Needs Simulation
 – Pre Specification Work
 • Need to ensure specifications are technically feasible
 – Evaluation of Proposals and Oversight of Supplier Efforts
 • ‘Honest Broker’ - proposed solutions should be evaluated on a level playing field
 • Verify supplier analyses are reasonable
 – Rapid Response for Field Fixes
 • Determine how new equipment will affect vehicle performance
 • Provide initial assessment before starting formal contract process for proposed upgrades
 – Direct R&DE efforts through cooperation with industry
 • Form partnerships to direct development efforts in areas of interest to the Army
General Challenges

- Government does not always own the technical data package
 - May be difficult to get the CAD data
 - Vehicle may have to be scanned
 - System and component performance often not available
 - Flow rates, temperatures, heat rejection information may need to be estimated or measured experimentally
 - Contractors won’t or can’t share material thermal properties
 - Composite armor stacks
 - Anisotropic conduction
- Data management
 - Long program life cycle means that data needs to be stored and organized for long periods of time
 - Need to tracking a large number of different vehicle configurations and equipment lists
- Data exchange between software packages
Interior Thermal Analysis

- Harsh environment
 - 30 °F is 1% day in Iraq
 - 125 °F in summer
 - In-gear creeping speed
- Up-armored vehicles = heavy
 - Large thermal mass
 - High engine loads = high heat loads
- Open Hatch
- Use of Commercial Equipment
 - Lower temp spec ~95 °F
- Interested in Cool down Time

Challenge: Perform full transient analysis
Example of a capability add-on (Equip Pack 2)

Challenges:
- When will electronics have a thermal problem?
- Air temperature around equipment or surface temps?
- What are component heat rejection rates/duty cycles?

Prediction of equipment temperatures
Fire Suppression Modeling

- Goal: Extinguish flame in a fraction of a second
- Place extinguisher bottles into crew area at optimal point
- Challenges:
 - Very deep physics
 - Reacting flows
 - Determine effect on human occupants

Interaction of flame with suppressing agent
Blast Modeling

• Goal: Predict behavior of structure during mine blast event
 – Improve vehicle survivability

• Challenges:
 – Modeling soil mechanics
 – Fluid-structure interaction with highly deforming mesh
 – Modeling detonation waves
Grille Optimization

- Multidisciplinary ballistic grille optimizations
- Challenges:
 - Trade-off between ballistics protection, weight, and airflow performance
 - Large amount of cooling airflow through a small area results in high fan power or engine performance degradation

UNCLASSIFIED
Infrared Signature Modeling

- Delta apparent temperature from the background
- A vehicle does not have a single thermal “signature”
 - Normally plot metrics as histogram
 - Multiple view angles, times, and backgrounds
- Challenge: Calculating updated convection coefficients every 15 minutes using CFD

Histogram of Signatures

UNCLASSIFIED
Thermal Budgeting

Solar load that strikes exterior:
- ½ is convected away by wind
- ¼ is radiated away
- ¼ is conducted to interior

Solar load that is conducted to interior:
- 2/3 is convected into air
- 1/3 is radiated toward walls

Challenge: Identifying best “Bang for the buck” technologies to minimize HVAC size
Specialized Issues

- Exhaust plume modeling
- Amphibious water crossing / fording
- Acoustics signature / silent watch
- Gun tube heating

Automotive Issues

- Under hood Cooling
- HVAC System Design
- Defrost
- Fuel Economy
Working With The Government

- **Broad Agency Announcement**
 - Certain basic or applied R&D not for any particular vehicle
- **Education Partnership Agreement**
 - Encourage and enhance study in scientific disciplines at all educational levels
- **Ground Vehicle Gateway (GVG)**
 - Online portal that will help forward inquiries or proposals directly to NAC or TARDEC researchers
 - https://tardec.groundvehiclegateway.com
- **National Automotive Council**
 - *Army focal point for dual-use automotive/ground vehicle technology development*
- **Small Business Innovative Research Program (SBIR)**
 - Tap into the small business community’s innovativeness and creativity to help meet government R&D objectives
Example: Working w/ Government

- Need: Predict soldier thermal fatigue in CFD models
- Goal: Dual government/industry use
- CRADA (Cooperative Research and Development Agreement)
 - GM shares experience and “lessons learned”
 - TARDEC oversees implementation and pays development
 - Small business entity develops code and sells commercially

Soldier Thermal Fatigue Model
- Implement Berkley Human Comfort Model
- Develop soldier models w/ battle gear
- Metabolic heat rates by role (driver, gunner, commander)
- “Comfort” index generated from local skin temps and body core temp
Conclusion

- TARDEC is actively involved in using CFD in a variety of areas
- TARDEC faces many of the same challenges as the automotive industry
- Partnerships with industry play a large role in advancing technology