Accelerated Insertion of Materials –

Manufacturing and Producibility of Hat Stiffened Structure

49th International Society for the Advancement of Material and Process Engineering Symposium and Exhibition

17 May 2004

Pete E. George
pete.e.george@boeing.com

Keith. Rupel
keith.rupel@boeing.com

John Griffith
john.m.griffith@boeing.com

Jointly accomplished by BOEING and the U.S. Government under the guidance of NAVAIR.

Sponsored by DARPA/DSO and administered by NAVAIR through TIA N00421-01-3-0098

Approved for Public Release, Distribution Unlimited
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing and Producibility of Hat Stiffened Structure</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Boeing Company</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Boeing Company</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Boeing Company</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>UU</td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td>UU</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Accelerated Insertion of Materials –
Manufacturing and Producibility of Hat Stiffened Structure

• Background and Problem Definition
• Hat Stiffened Panel Processing and Past Challenges
• Problem Solution Approach - AIM-C Methodology
• Materials Characterization
• AIM-C Producibility Heuristics
• Hat Structure Definition
• Tooling and Processing Approach
• First Round Results
• Second Round Results
• Summary
• **Background and Problem Definition**
 - Hat Stiffened structure offers significant structural and fabrication advantages

However........

 - Process development and fabrication of composite hat stiffened structure has proven problematic in the past
 • Trial and error without good knowledge of process bounds
 • Subsequent quality issues in production

• Accelerate the process development of hat stiffened structure using AIM-C
• Successfully fabricate quality structure with as few iterations as possible
Hat Stiffened Panel Processing and Past Challenges

- Hat side wall/cap ballooning where the sidewalls are not flat
- Upper and lower radius thin-out (fiber movement and resin starvation)
- Hat miss-location (hat to hat spacing)
- Curved or snaking stiffener shape
- Stiffener sink where the skin under the stiffener is of less thickness than blueprint
- Other skin thickness variations between under the hat and adjacent to the hat (resin rich or resin poor areas)
- Adhesive migration if adhesive is used in the fillet area.
- Ply waviness around the radii
- Fillet porosity (hat to skin intersection)
- Skin out-of-plane waviness at the stiffener flange edges
- Resin rich areas at the stiffener termination if a net molded stiffener is used
- Trimming errors if the stiffener termination is trimmed after molding
- The typical array of flat panel manufacturing defects including porosity and delaminations
• Hat Stiffened Panel Processing and Past Challenges

- Ballooning
- Lower radius thickening
- Upper radius thinning
- “Bow waves”
- Radius waviness
- Radius porosity

Approved for Public Release, Distribution Unlimited
Accelerated Insertion of Materials – Manufacturing and Producibility of Hat Stiffened Structure

• AIM-C Methodology

Problem Definition → Information Collection → Readiness/Risk Assessment → Readiness Advancement Plan → Plan Execution

- AIM Heuristics
- TRLs, XRLs
- Past Experience
- Industry Knowledge
- Exercise Existing AIM Simulations

Define Readiness Level Req’ts → Results Evaluation → Readiness Level Update

Meets Readiness Req.’ts? → Complete

Approved for Public Release, Distribution Unlimited
Materials Characterization

- Dynamically oscillate (Dynamic Test) crosshead to measure modulus or apply constant force (Creep Test) and measure beam displacement due to cure shrinkage and CTE.

- Supporting the curing material with the steel shim eliminates the need for staging of DMA specimens meaning Accelerated Material Testing.

- Steel, \(t = 0.006" \)

- CFRP or Adhesive, \(t \approx 0.040" \)
• **Materials Characterization**

AS4/977-3 - Transverse Modulus Development

![Graph showing AS4/977-3 Transverse Modulus Development](image)

- 355°F Experimental
- 355°F Replicate Exp
- 355°F Model
- 330°F Experimental
- 330°F Model
- 315°F Experimental
- 315°F Model
- 275°F Experimental
- 275°F Replicate Exp
- 275°F Model

- Time (min)
- Modulus (Psi)
Accelerated Insertion of Materials – Manufacturing and Producibility of Hat Stiffened Structure

Materials Characterization

Minimum Viscosity Assessment

<table>
<thead>
<tr>
<th>Material</th>
<th>Flow Rate</th>
<th>Viscosity (Poise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>977-3 High</td>
<td>Low</td>
<td>1000.00</td>
</tr>
<tr>
<td>977-3 Low</td>
<td>Moderate</td>
<td>100.00</td>
</tr>
<tr>
<td>Low Flow</td>
<td>High Flow</td>
<td>10.00</td>
</tr>
<tr>
<td>Moderate Flow</td>
<td>High Flow</td>
<td>1.00</td>
</tr>
<tr>
<td>High Flow</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>Low Flow</td>
<td></td>
<td>0.01</td>
</tr>
</tbody>
</table>

Consolidation Challenges

- Due to High Viscosity

Autoclave Bagging Technique

- Technique A
- Technique B
- Technique C

Data From Simulation

- Historical Database Information
- Reference Database Information

Approved for Public Release, Distribution Unlimited
AIM-C Producibility Heuristics

<table>
<thead>
<tr>
<th>Issue</th>
<th>Semi-Rigid Cocure Tooling</th>
<th>Cobond with Wet Hats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick/Thin Flanges</td>
<td>Flange thickness is a minor problem assuming semi-rigid section extends into bay between stiffeners. (<10% flange thickness error). Assume flange and skin under flange experience the same fiber volume change.</td>
<td>Flange edge thickness more variable. Flanges typically 15% thin due to tooling pressure. (Fiber volume change in flanges and skins under the flanges. Resin flowed out toward midbay and noodle area.)</td>
</tr>
<tr>
<td>Skin Waviness Beyond the Hat</td>
<td>Typically not a significant issue. A slight (<5%) thickness increase may be noted beyond stiffener flange.</td>
<td>Not an issue with precured skins</td>
</tr>
<tr>
<td>Shim Induced delamination at hat termination</td>
<td>Tooling is rigid enough to be pinned in place and prevent undercut by the shim. Some slight flange fiber movement over the shim is possible but can be trimmed back to the required shape</td>
<td>No shim required.</td>
</tr>
<tr>
<td>High/Low fiber volume at flange termination</td>
<td>Low fiber volume is common in net formed hats for ply pull back. Tooling approach does not significantly affect this.</td>
<td>Low fiber volume is common in net formed hats for ply pull back. Tooling approach does not significantly affect this.</td>
</tr>
<tr>
<td>End of hat thick or thin flanges</td>
<td>Limited intensifier droop near the end of the panel (5%)</td>
<td>Tooling flexibility will allow a roll-off or pinching at the hat termination. Expect the flanges to taper to 15% thin at tooling termination. If the hats are not net shape, this in not much of an issue.</td>
</tr>
<tr>
<td>Skin Waviness beyond the hat</td>
<td>The hat mandrel can create markoff beyond the end of the hat. Since this is typically a mating surface, shims are used to reduce this effect. Expect a 10% thickness decrease with shims.</td>
<td>Not an issue with precured skins</td>
</tr>
<tr>
<td>Tool mark-off</td>
<td>Tool mark-off can be reduced by terminating the inner stiffening member before the flexible coatings.</td>
<td>Not an issue with precured skins</td>
</tr>
</tbody>
</table>
Accelerated Insertion of Materials –
Manufacturing and Producibility of Hat Stiffened Structure

• Hat Structure Definition

Ramp Detail

Stiffener (ref)

Radius 0.635 cm

Termination Detail

1.78 cm (typ.)

7.87 cm (typ.)

47.5 cm

9.75 cm (typ.)
• Hat Structure Definition

- Ply 1
- Ply 2
- 0.476 cm R
- 0.618 cm R
- 2.03 cm
- 3.20 cm
- 55.63 cm
- 15 deg (ref)
- 0.216 cm from top of skin to top of hat

Approved for Public Release, Distribution Unlimited
• Tooling and Processing Approach

Studies with AIM Structures Tools indicated significant performance knockdowns if out of plane wrinkles occurred at hat termination.

AIM producibility heuristics indicated this could be an issue for co-cure structure

No heat-up rate or exotherm issues for any of the proposed tooling configurations based on simulation.

Co-bonding was selected over co-curing
• First Round Results – Simulation configuration

Cure Cycle Information

Pre Processor 1
HSP Geometry, Lay-up & Tooling Configuration

PATRAN

Pre Processor 2
Autoclave, Cure Cycle, Material Selection & Caul Plate Configuration

Tooling Configuration

Geometry & Lay-up from Structures

Processing Module
Using Resin, Fiber & Lamina

Detailed Data Output vs. Time

Structures information

Approved for Public Release, Distribution Unlimited
First Round Results – Simulation Shape Prediction

Predicted Mandrel Growth
- A +0.109 cm in Y
- B +0.048 cm in Y
- C +0.025 cm in X
- D +0.089 cm in X
- E + 0.025 cm in X

Overall Height from Pre-cured Skin
- F 2.21 cm

Compensate mandrel to prevent ballooning
• First Round Results – Silicone Elastomeric Mandrel with compensated sides and top

2.54 cm
Accelerated Insertion of Materials – Manufacturing and Producibility of Hat Stiffened Structure

- Tooling and Processing Approach – Caul sheet

- Use semi rigid reinforcement in caul sheet to maintain radius control

Approved for Public Release, Distribution Unlimited
Accelerated Insertion of Materials – Manufacturing and Producibility of Hat Stiffened Structure

• First Round Results – Viscosity Predictions

![Graph showing temperature and viscosity changes over time]

- **Hi Ht AirTemp0**
- **Hi Ht Temp1458** (under mandrel between wrap and hat plies)
- **Hi Ht Temp386** (Edge of part at Adhesive termination (0.6” in))
- **Hi Ht DOC3** (Center of Radius filler region)
- **Hi Ht DOC27** (Adhesive Layer under mandrel)
- **Hi Ht DOC84** (Adhesive layer edge of part (0.6” in))
- **AIRTC**
- **Hi Ht Viscos420** (Wrap plies edge of part (0.6” in))
- **Hi Ht Viscos3** (Center of Radius filler region)
- **Hi Ht Viscos27** (Adhesive Layer under mandrel)
- **Hi Ht Viscos84** (Adhesive layer edge of part (0.6” in))

Temperature (F)
- 400
- 350
- 300
- 250
- 200
- 150
- 100
- 50
- 0

Viscosity (Pa.S)
- 1.00E+07
- 1.00E+06
- 1.00E+05
- 1.00E+04
- 1.00E+03
- 1.00E+02
- 1.00E+01
- 1.00E+00

Time (Min)
- 0
- 50
- 100
- 150
- 200

Approved for Public Release, Distribution Unlimited
Accelerated Insertion of Materials – Manufacturing and Producibility of Hat Stiffened Structure

- **First Round Results – Temperature predictions vs. actual**

![Graph showing temperature over time with various markers representing different locations such as temperature predictions vs. actual, Hi Ht Air Temp0, Hi Ht Temp1 (on bottom of tool at center), Hi Ht Temp1068 (between precured skin and tool), Hi Ht Temp1045 (under mandrel between wrap and hat plies), Hi Ht Temp2797 (in cap plies on top of hat), Hi Ht Temp2846 (above rubber caul), Hi Ht Temp386 (edge of part at adhesive termination (0.6" in)), AIRTC, 1" above tool, above rubber caul, in hat cap, cured skin/skin under hat mandrel, under cured skin, on tool, 1" below tool.]

Approved for Public Release, Distribution Unlimited
Accelerated Insertion of Materials –
Manufacturing and Producibility of Hat Stiffened Structure

• First Round Results

0.187” target

0.090” target

note: .006” thick peel ply on entire upper surface

Approved for Public Release, Distribution Unlimited
Accelerated Insertion of Materials –
Manufacturing and Producibility of Hat Stiffened Structure

• First Round Results Shape Predictions vs. Actual

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+0.109 cm in Y</td>
<td>+0.152 cm in Y</td>
</tr>
<tr>
<td>B</td>
<td>+0.048 cm in Y</td>
<td>+0.102 cm in Y</td>
</tr>
<tr>
<td>C</td>
<td>+0.025 cm in X</td>
<td>+0.076 cm in X</td>
</tr>
<tr>
<td>D</td>
<td>+0.089 cm in X</td>
<td>+0.102 cm in X</td>
</tr>
<tr>
<td>E</td>
<td>+0.025 cm in X</td>
<td>+0.025 cm in X</td>
</tr>
</tbody>
</table>

Height 2.21 cm 2.27 cm

Approved for Public Release, Distribution Unlimited
• **First Round Results**

 - Excessive Radius thinning at top of lower radii
 - Thickness mismatch between plies under hat and outside hat
 - While possibly acceptable additional goal was to match geometry of structural prediction
 - Interaction between shape compensated mandrel and semi rigid caul sheet
 - Team decided to redesign mandrels to reduce radius thinning

Approved for Public Release, Distribution Unlimited
Second Round

Mandrel Redesign Effort performed using simulation guided design of Mandrel with:
- Plane stress design assumption – Expansion in 2D, 3rd dimension extrudes mandrel out ends (experience based)
- Plane strain design assumption – Bulk behavior due to friction between mandrel and prepreg (Simulation based)
- Plain stress with open space to mitigate bulk behavior and help control shape (Simulation based)

Fabrication trials performed with all three designs to reduce schedule risk
• Second Round Results

- Updated simulation without mandrel compensation and rigid caul sheet

Approved for Public Release, Distribution Unlimited
Second Round Results

<table>
<thead>
<tr>
<th>Spec #</th>
<th>Between Hats (L side)</th>
<th>Under Hat</th>
<th>Between Hats (R side)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mid bay</td>
<td>Radius</td>
<td>L Radius</td>
</tr>
<tr>
<td>Target</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td>Plain Strain</td>
<td>0.038</td>
<td>0.042</td>
<td>0.035</td>
</tr>
<tr>
<td>Hole-2</td>
<td>0.040</td>
<td>0.062</td>
<td>0.035</td>
</tr>
<tr>
<td>Hole-1</td>
<td>0.041</td>
<td>0.070</td>
<td>0.032</td>
</tr>
<tr>
<td>Plain Stress-2</td>
<td>0.041</td>
<td>0.050</td>
<td>0.037</td>
</tr>
<tr>
<td>Plain Stress-1</td>
<td>0.041</td>
<td>0.050</td>
<td>0.040</td>
</tr>
</tbody>
</table>
• **Second Round Results**

Plane Stress assumption designed mandrel provided best results
All radii and thickness within tolerance
Successful fabrication of all parts to date
Accelerated Insertion of Materials –
Manufacturing and Producibility of Hat Stiffened Structure

• Second Round Results

Plain Strain Assumption Mandrel Sizing
A little Ballooning but otherwise nailed it on 2nd iteration
• Summary

• Temperature – Thermal response within range of predictions with exception of plies on top of hat. Most probable cure assumptions did prove conservative, All heat up rate and hold times met.

• Viscosity - All areas gelled near or at final hold temperature. Cure cycle modification to increase minimum heat-up rate may be wise to avoid premature adhesive gelation

• Degree of Cure – All parts reached desired degree of cure per simulation, experimental confirmation pending. Pre-cured skin did not advance beyond acceptable DOC range during co-bond.

• Shape – While initial trial offered production type quality parts, deviations from as designed geometry complicated strength prediction efforts. Therefore AIM tools and experience were used to redesign the hat mandrel shape. The second fabrication trial produced a part meeting all tolerance requirements. This successful mandrel design was based on analysis rather than experience. It should be noted that ALL parts fabricated were of typical or better quality for hat stiffened panels.
Accelerated Insertion of Materials –
Acknowledgements

Program Manager - Dr. Leo Christodoulou of DARPA/DSO

NAVAIR Program Monitor – Dr. Ray Meilunas

Boeing Program Managers - Gail Hahn, Karl Nelson (Deputy), and Charley Saff (Deputy)

AIM-C Team – American Optimal Decisions, Boeing (St. Louis, Seattle, Canoga Park, Philadelphia), Convergent Manufacturing Technologies, Cytec Engineered Materials, Intec, Lee and Associates, Massachusetts Institute of Technology, Materials Sciences Corporation, Northrop Grumman Corporation, NSE Composites, Roth Group, Stanford University

Certification Advisory Team – Air Force, Army, Federal Aviation Administration, NASA (Langley), and NAVAIR

Approved for Public Release, Distribution Unlimited