State of the Art Reinforcement for Concrete Bridge Decks

Steven Sweeney
Orange Marshall
Vincent Hock

U.S. Army Corps of Engineers, Engineer Research and Development Center,
Construction Engineering Research Laboratory
Champaign, IL

Phil Malone

U.S. Army Corps of Engineers, Engineer Research and Development Center,
Geotechnical and Structures Laboratory
Vicksburg, MS
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>FEB 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2009 to 00-00-2009</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>State of the Art Reinforcement for Concrete Bridge Decks</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, IL, 61826-9005</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>2009 U.S. Army Corrosion Summit, 3-5 Feb, Clearwater Beach, FL</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>20</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
Acknowledgements

- Mr. Jay Schmidt – IMCOM, Ft. Knox, KY
- Mr. Bob Senzy - NX Infrastructure Limited
- Mr. Bill Geers – MMFX Steel Corporation
Overview

• Background
• Reinforcements
 – MMFX 2
 – Nuovinox NX
• Ft. Knox Bridge Deck Projects
 – Culvert replacement
 – Mill Creek Bridge
• Summary
Background

- Deck corrosion is problematic and costly for vehicular bridges
- The Army alone has more than 1,500 bridges on its installations, with the majority having reinforced concrete decks
- FHWA Report RD-01-156 states that approximately one quarter of the direct cost of corrosion of bridges is maintenance and capital costs for concrete decks
- FHWA studies have also found that indirect costs to the user due to traffic delays, and lost productivity can be up to 10 times higher than the direct costs of repair and maintenance
Microcomposite Martensitic Ferretic Steel (MMFX 2)

- Initial proprietary technology developed at the University of California Berkeley by Professor Gareth Thomas
- Material composition resistant to corrosion
Corrosion of Pearlitic Steel

Schematic of Micro Galvanic Cells in the Ferrite-Iron Carbide Microstructure

Transmission Electron Microscope (TEM) Micrograph of the Ferrite – Iron Carbide Microstructure

Microgalvanic Cell Formation Between Iron-Carbide and Ferrite Phases

Corrosion Can Be Minimized By Avoiding Microgalvanic Cell Formation

Carbide (Typical)

Grain Boundary with Carbides

Courtesy MMFX
Microcomposite Steel

Microcomposite Steels, Packet Lath Martensite

Dislocated laths of martensite enveloped by stable retained austenite films

CARBIDE FREE MICROSTRUCTURE to Eliminate Formation of Microstructural Galvanic Cells

Courtesy MMFX
Mechanical Properties

MMFX 2

- Mechanical
 - $s_{y(0.2\%)} > 100$ ksi (690 MPa)
 - $s_T > 150$ ksi (1,030 MPa)
 - $e > 7\%$

- Conforms to ASTM C 035A/1035M-04 for concrete reinforcement
Advantage of Higher Strength

Typical Grade 60 Design

Design with 75 ksi limit (20% Less Steel)

DECK SECTION WITH GRADE 60 REINFORCEMENT:

DECK SECTION WITH GRADE 75 REINFORCEMENT:

NOTES:
1. ROADWAY DECK SLAB SHALL BE 4000 PSI - 3/4" - 585 LB HP CEMENT CONCRETE.
2. #4 LONITUDINAL REINFORCEMENT SHALL BE PLACED PARALLEL TO THE # OF CONSTRUCTION.
3. #5 MAIN REINFORCEMENT SHALL BE PLACED PERPENDICULAR TO THE # OF CONSTRUCTION.
4. ALL REINFORCEMENT AND SUPPORTING DEVICES SHALL BE MMFX 2 STEEL.

Courtesy MMFX
Corrosion Resistance

• MMFX 2 rebar’s corrosion resistance has been reported at between 5 and 6 times that of conventional A615 rebar

• MMFX 2 rebar’s corrosion rate has been reported to be between 1/3 and 2/3 that of conventional A615 rebar

• MMFX 2 rebars have expected 75+ years service life
Nuovinox NX-SCR

- 316L Stainless steel cladding with carbon steel core
- Patented “green” process bonds stainless steel to carbon steel
- Optimizes stainless steel’s very high corrosion resistance with the mechanical properties and elastic modulus characteristics of low alloy carbon steel
- Half the cost of stainless steel reinforcement while providing comparable strength and corrosion resistance
Manufacturing Process
Properties
NX-SCR

- Produced in 1/8 in. diameter increments ranging from a #4 through to a #10
- Stainless Steel thickness between .014 and .035 in. (2 to 7 times the minimum .007 in. requirement for ss clad rebar)
- Standard length: 39.5 ft
- Nuovinox stainless clad rebar conforms to AASTO MP13 (this code is based on ASTM A955 and ASTM A615)
Corrosion Resistance
NX-SCR

• Compatible with 316L Stainless Steel
• High service life (>100 years)
 – Epoxy coated rebar corrosion life between 20 and 40 years
 – Based on bridge model assuming surface chloride concentration of 26 lb/yd3
• Expected to remain corrosion free at chloride concentrations up to 15 lb/yd3
Bridge Deck Replacement
Ft. Knox, KY

- Replacement of two bridge decks where road salts are used for de-icing

- One of two types of state-of-the-art corrosion resistant reinforcement, MMFX 2 and Nuovinox NX-SCR, will be used at each bridge

- Installation of each type of rebar at nearly identical locations will allow for a side-by-side comparison and evaluation of the rebar performance

- Data will be collected for multiple years to monitor corrosion

- Life expectancy of both types of rebar is expected to exceed 75 years
Fort Knox Culvert Bridge

- Tanks and regular vehicular traffic use this bridge
- Slated to be replaced in the near future with a single-span bridge
- Subjected to de-icing salts
Location

• Culvert Replacement
Bridge Over Mill Creek

- Two lane bridge, wooden deck
- Total replacement including a concrete deck
Product

• Positive results observed as part of this project will result in recommended changes in ACSIM’s Installation Design Standards

• Results will also be presented to ACI, ASCE, and ASSHTO
Summary

• Single-span bridges to be constructed in Fort Knox, KY will test longevity and durability of two types of rebar

• MMFX 2 is a novel reinforcing steel; a low in carbon, chromium, microcomposite steel that conforms to ASTM C 1035A/1035M-04 for concrete reinforcement

• Nuovinox is a type of long-term rebar that consists of stainless steel cladding with a carbon steel core, providing similar properties to stainless steel rebar at a reduced cost

• These two state-of-the-art reinforcing bars have the potential to reduce initial costs, increase the lifespan of bridge decks and reduce maintenance costs due to corrosion of rebar