Aging Aircraft Branch
Overview

AMTC Steve Smith
Aging Aircraft Branch Overview

1. REPORT DATE
FEB 2009

2. REPORT TYPE

3. DATES COVERED
00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Aging Aircraft Branch Overview

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Coast Guard, Aging Aircraft Branch, Elizabeth City, NC, 27909

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
2009 U.S. Army Corrosion Summit, 3-5 Feb, Clearwater Beach, FL

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
28

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Corrosion Cell/AAB

Working specifically on supporting programs like sheltering, dehumidification and other corrosion prevention methods. Leveraging DoD and industry on joint initiatives to mitigate corrosion. Coordinate with CG Headquarters and Aviation Facility Manager to support initiatives which improve mission readiness and reduce life cycle costs.

Among the challenges the services face in keeping their equipment and supplies in good operating condition is corrosion caused by exposure to the environment. GAO-06-709
Coast Guard Corrosion Program Goals

Where the Rubber Meets the Road......

Identify and Implement Real Time Corrosion Mitigation Initiatives.

- Introduce State-of-the Art Technology.
- Institute a Continuing Comprehensive Corrosion Training Program.
- Establish an Extensive Corrosion Mapping Program.
- Cultivate an Aggressive Corrosion Preventative Advocate Program.
- Construct Environmental Severity Indices.
- Implement a Dehumidification Program.
- Drive PDM and MPC Schedules.
U.S. Coast Guard Aircraft

Total Aircraft: 199
Total Air Stations: 27
(Including HITRON & APO)

HH60
41 Aircraft
8 Air Stations

HH65
99 Aircraft
17 Air Stations

HU25
23 Aircraft
5 Air Stations

HC144
3 Aircraft
(5 additional on order)
1 Air Station

HC130
33 Aircraft
(incl. 6 “J” models)
5 Air Stations
Corrosion in Coast Guard Aviation

- Age of Aircraft
- Environmental Severity
- Operational Demands
- Remote Deployments
- Hanger Deck Experience Level
- Rescue Swimmer Ops
- New Deepwater/Homeland Security Challenges
Corrosion Prevention Advocate

Drives the Air Station Corrosion Program...

- Ownership
- Prime Duty
- Billet (E7/E6)
- Water Testing
- Provide Training
- Approved Chemical List
- Station TIMI / Eng Instruction
- Report Directly to Engineering Officer
Logistics Compliance
Inspections

Ensure Your House is in Order …

• Evaluate Effectiveness of Corrosion Control Program

• CPA Involvement

• Engineering Instruction

• Adherence to Process Guide

• Aircraft Inspections
Water Analysis

Tested Semi-Annually by CPA

Aircraft Computerized Maintenance System (ACMS)

- Dissolved Solvents < 500 ppm
- Chlorides < 50 ppm
- pH: 6 – 8
- HH65C Turbomeca requirements

MPC – GS 159001.0
Aircraft Cleaning

Most Effective Tool in Preventing Corrosion
Required: Hot Water (120-140 Degrees) & Foamers

C-130
Wash: 2 Weeks (Flap/Wheel Wells)
Wash: Monthly (Fuselage)

HU-25
Wash: Weekly
Rinse: Daily (Engines)

HH-60
Wash: Daily & 14 Day Detail Inspection
Rinse: 50’ Salt Water Hover

HH-65
Wash: After last flight of day/Post Flight
Rinse: Flights below 500 feet
Wash: For 7, 14, 30 inspections
Corrosion Prevention Compounds

C-130

ACF-50: Fogging airframe application / Amalguard

HH60 / HH65

Fluid Film - Fogging w/ Liquid A

HU-25

Mil-PRF-81309 Type 1 - Fogging

New Revision

MIL-PRF-81309

Mil-PRF-85054
Corrosion Training

- Aircraft Corrosion Control - Pensacola FL. (Air Force)
 Course Code # 500783 (Resident and Exportable)

- Advanced Composite Technology - Sparks, NV
 Course Code # 140200 (Resident and Exportable)

- Aging Aircraft Corrosion Control
 (Fills requirement for Corrosion Process Guide)

- Annual CPA Seminar (Sandia Natl. Labs)
 Now includes training for Student Engineering Officers
Higher rates of corrosion result in increased repairs and replacements, drive up costs, and take critical systems out of action, reducing mission readiness. Corrosion can also reduce the safety of equipment items. Although reliable cost data are not available, estimates of corrosion costs DOD-wide have ranged from $10 billion to $20 billion annually.

One Army study showed that sheltering equipment in a humidity-controlled facility had a return on investment, at minimum, of $8 for every $1 invested.
Battelle Corrosion Severity Test Results

3 Month Outdoor Exposure
E-City Air Station

12 Month Indoor Exposure
E-City HH-60 Hanger

12 Month Indoor Exposure
HMF Environmentally Controlled
Corrosion Mapping

- Physical Airframe inspections
- Target Specific Grid/Zones
- Currently Depot Only
 - Light – 7,684
 - Moderate – 1,988
 - Severe – 3,840
 - Other – 2,746
 - Total – 16,258
- ACMS - ALMIS Data Base
- Pictorial & Data Views
Maintaining low humidity levels reduces corrosion because moisture is a primary cause of corrosion. GAO-06-709
DH & Corrosion Rates/Avionic Benefits

• Why use Dehumidification? Reduction in Relative Humidity (moisture). A dry airframe is a happy airframe.
• Corrosion increases at RH levels above 60%. Below 45% RH, corrosion process virtually ceases.

(Source: Naval Audit Service 025-95)

MTBF greatly reduced with humidity levels below 50%

1 Vernon, W. H. J. (1926).

2 Sandia National Laboratories
Dehumidification Efforts

Site assessments complete at all CG Prime Units.

Requirements:
• Ease of use – On/off in 5 minutes
• Lower relative humidity in 1 hour to at or below 40% RH
• Hangar / ramp operations
• Temperature / Relative Humidity

• C130/HH60 – Elizabeth City, NC
• HH65 – Atlantic City, NJ
• HU25 – Mobile Alabama

Units have been delivered to all Prime Units, OT&E underway.

Note: One Army study showed that sheltering equipment in a humidity-controlled facility had a return on investment, at minimum, of $8 for every $1 invested.
Dehumidification Increases Readiness & Availability

- 20% increase in aircraft availability.
- 24% decrease in “no fault found discrepancies.
- 15% decrease in unit level maintenance of avionics*

* Source: United Kingdom testing on the Tornado aircraft.

Higher rates of corrosion result in increased repairs and replacements, drive up costs, and take critical systems out of action, reducing mission readiness.

GAO-06-709
DH Metrics

- Exceeding 8 hrs/day
- Increased Reliability

Data that could help reduce corrosion of pre-positioned assets are not available. They are not available because the services consider this information to be a low priority and do not systematically collect it. GAO-06-709
New DH Carts from
Wiring Corrosion Prevention

- Use CPCs like MIL-C-81309 to prevent cannon plug corrosion. Develop a training program for aircraft aging wiring.
- Implemented the use of Avdec SLG to prevent cannon plug corrosion.
- Implemented the use of Avdec antenna gaskets to prevent corrosion.
Vibration Lab (Technical Capabilities)

- Helitune Field Support
- Real-Time Dynamic Data Acquisition and Analysis
- Historical Data Archive & Trending
- Model Testing

Commanding Officer
US Coast Guard ARSC
Engineering Vibration Lab
Hwy 34, Bldg 100
Elizabeth City, NC 27909

Attn: AMTC Ramirez or Jim Cowgill
Phone No. 252-335-6620/6835
D05-SMB-ARSC_Vibe_Lab@uscg.mil
USCG Nondestructive Inspection

Tools used to detect metallic and non-metallic defects and evaluate / monitor for limitations after repairs

Rusty Waldrop
USCG NDI Program Manager
Rusty.G.Waldrop@USCG.MIL
252-335-6935

Bond master style instrument to determine Unbond, debonding and disbonding in composite materials.

Ultrasonic Method currently being trained To detect corrosion and measure material thicknesses

Radiography Currently in use at ARSC

Thermal Imaging acquisition system Currently being reviewed for depot level Maintenance

Staveley Eddy current machines, Currently being used in the fleet..
Partnership Industry
Sister Services

Ongoing relationship with Joint Council of Aging Aircraft (JCAA) provides unique opportunities through Corrosion Steering Group (CSG)

- Funding for HH60 AvDec gaskets
- Funding for magnesium coating evaluation

Interaction with Office Secretary Defense (OSD)
- Guidance through a focused corrosion Team effort

Army/Air Force Corrosion Office / NAVAIR
Control or Prevention
Control or Prevention
No Magic Bullet

Basic Maintenance Practices

Ownership / Buy In

Attention to detail

Pride in your efforts
Questions?

CWO Erick Ludwigson
Corrosion Program Manager
PH: (252) 335-6953
EMAIL: Erick.J.Ludwigson@uscg.mil

AMTC Steve Smith
Asst. Corrosion Program Manager
PH: (252) 334-5017
EMAIL: Steven.M.Smith@uscg.mil

Mr. Bryant Denning
Rotary Wing Corrosion Prevention Advocate
PH: (252) 335-6802
EMAIL: Bryant.A.Denning@uscg.mil

Mr. Jim Valky
Fixed Wing Corrosion Prevention Advocate
PH: (252) 334-5013
EMAIL: James.Valky@uscg.mil

Website: http://cgweb.arsc.uscg.mil/eisd/content/corrosion_control/corrosion_control.cfm

FAX: (252) 334-5034