Award Number: W81XWH-06-1-0234

TITLE: Molecular Identification of Human Fungal Pathogens

PRINCIPAL INVESTIGATOR: Brian L. Wickes, Ph.D.

CONTRACTING ORGANIZATION: University of Texas Health Science Center
San Antonio, TX 78229-3900

REPORT DATE: March 2009

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Molecular Identification of Human Fungal Pathogens

University of Texas Health Science Center
San Antonio, TX 78229-3900

Type culture sequences and depositing these sequences into our database. These sequences form the centerpiece of this proposal and represent the target DNA sequences of the original fungal strain from which the species name was first described. Therefore, just as the "Type culture" is the original strain from which all the characteristics of the species are defined, the "Type sequence" is the defining sequence by which a molecular identification of the particular species can be made. In addition to obtaining Type sequences and depositing them into the database (subtask 1), the second subtask consisted of obtaining additional sequences from clinical isolates that we have at our institution and depositing these sequences into our database as well. The findings during this phase of the study are that we have been able to successfully recover sequences from Type cultures that were obtained from culture repositories and add them to our database. We have also added sequences from clinical isolates from our institution’s culture collection, and also have developed methodology to identify and add clinical isolate sequences as they come in from patients, if we deem them interesting/important or novel. These findings have built upon our earlier task completion, which included development of the database and standardization of the methodology. We now have a working system that will enable completing the last task of the study.

15. SUBJECT TERMS
rDNA, SEQUENCING, PCR, BLAST

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
125

19. TELEPHONE NUMBER (include area code)
USAMRMC

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4-6</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6-7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>7-10</td>
</tr>
<tr>
<td>Conclusion</td>
<td>10-11</td>
</tr>
<tr>
<td>References</td>
<td>11-12</td>
</tr>
<tr>
<td>Appendices</td>
<td>13-126</td>
</tr>
</tbody>
</table>
INTRODUCTION: This proposal focuses on the development of a system for the molecular identification of human fungal pathogens using a biocurated database of DNA sequences. While common fungi can be easily identified by clinical microbiologists, identification of non-routine fungi from clinical specimens cannot be reliably done without specific training in mycology. Unfortunately, individuals with this training are in short supply in both civilian and military hospitals. The objective of this study is to enable laboratory technicians to make proper identifications without experience in mycology using standardized techniques developed in this proposal to generate a DNA sequence, which can then be used to search an internet-accessible database developed by our laboratory. The output from searches of this database will be reconfigured from the standard BLAST algorithm search output currently used by Genbank (the largest sequence repository in the world) to yield an accurate identification that utilizes proper and consistent fungal nomenclature. This strategy will allow technicians to provide an appropriate identification, enabling clinicians to more efficiently select the proper treatment course. The significance of our study will be to enable any clinical laboratory, regardless of mycological expertise, to identify any human fungal pathogen faster and more accurately than is presently possible, using a single assay.

BODY: This reporting period is the third of this award and describes work in progress on the third of the four tasks (tasks 1 and 2 were completed by the last reporting period). Presently all tasks are on schedule and no changes to the original Statement of Work have been made. No major problems have been encountered, and because our first year was ahead of schedule, we have expanded the work on the database through more frequent meetings with our programming group. Since tasks one and two are complete, they won’t be elaborated on in this report, however, they consisted of: Task 1: Creation of an internet-accessible, sequence database for the molecular identification of all known human fungal pathogens. (Months 1-12), and Task 2: Development of standardized protocols for PCR and sequencing template preparation. (Months 6-18). The third task is the subject of this report and consists of Aim 3. Generation of type sequences. (Months 6-36).

The main aspect of our database consists of an internet portal that allows access to the database through the BLASTn search algorithm. The database is accessed through a UTHSCSA site (http://pfris.uthscsa.edu/), which takes users to the face page (Fig 1). This page has multiple links that direct users to information about the site, how to do searches, how to prepare sequences, and background information about the database. Other links are included to provide information about medical mycology in general, and particular species of fungi in particular. Presently we have almost six hundred cultures in our collection. We have obtained about five hundred sequences and deposited these sequences, after careful quality control to insure that they are correct and accurate, into the database. In addition to reference sequences (Type cultures, genomic sequences, culture collection isolates) we also identify and incorporate isolates that may be unusual or not reported as human pathogens. In particular, we are interested in fungi that could be potential zoonotic agents, and have used molecular sequencing to identify a number of these isolates from a wide range of animals (1,3,8,10,13,15,16,17). Given the presence of the United States military in Iraq and Afghanistan, we have also been interested in isolates that have origins in these regions and have published one report on a case involving an isolate from the
middle east (5). Other studies have included the molecular identification of isolates that infect the immunosuppressed (1,2,4,6), which are of interest because these are rare infections that can be impossible to identify and difficult to treat, and support for a genome sequencing project centered at MIT that used one of our strains (7). Finally we have also collaborated on fungal infections in the chronically ill (9) and are in discussions to conduct a broad-based study of fungal infections in patients with cystic fibrosis in which we will do all of the identifications using our database.

function of our database, we have also intended this proposal to serve as a vehicle for obtaining and storing high quality sequence information that could be used in other platforms (11,12). These studies rely on the data we have added to the database for other purposes, such as developing new diagnostic reagents using the sequence data to design new probes.

In order to capture and continually add new potentially pathogenic fungal sequences into our database, we have established a link with the UTHSCSA Dept. of Pathology, Fungus Testing Laboratory. This laboratory regularly obtains isolates from all over the world that clinical microbiologists have not been able to identify. In order to follow these isolates and identify sequences of interest, we have recently begun building a second database that is an internal database that runs parallel to our main, PFRIS database. This database is the Fungus Testing Laboratory Clinical Isolate Database, which we will use as a tracking database. Any fungus that comes into the laboratory that we feel is of interest, we can, by a simple process, import this sequence and all the information attached to it, into our own database. This strategy will contribute greatly to our original goal of making the PFRIS database a dynamic database that is
continually updated with new sequence. The approach will greatly strengthen our sequence redundancy by allowing us to easily add multiple sequences for each species of fungus.

Finally, now that our main database is operation (the PFRIS database), we continually quality control test the database, and look for ways to improve its power or functionality. We intend, in future studies, to expand the functionality of this database by allowing users to search the database for information that they may find useful. To more efficiently accomplish this task, data in the database needs to be ordered and classified in more detail. Therefore, during this most recent period we have added functionality by adding additional fields to the main database. These fields are based on the National Center for Biotechnology, Genbank database, and consist of fields that allow a more detailed taxonomic classification of data. The Genbank database has a Taxon number that is unique for every species of organism. We have added a field for these numbers, based on the Genbank database, so that a single number can be searched if someone wants to find all of the records in our database that relate to one species of fungus. We then extended what the Genbank database does and added separate fields that will hold phylogenetic information. These fields consist of entries for Phylum, Class, Order, and Family. Searching the database using these fields will allow users to group records by different taxonomic criteria, and then investigate the sequences depending on their search parameters. We have found these modifications to the database to be relatively easy to perform and will continue to make additional improvements in the coming year.

KEY RESEARCH ACCOMPLISHMENTS: Most of the key research accomplishments have centered around publications, however, we have also established collaborations with military hospitals, made presentations, and continued to expand the programming aspect of this study. A brief list of key accomplishments is as follows:

A. The first two tasks of this proposal were technical in nature and have been completed and applied to task three. We now have standardized methods for obtaining sequences from isolates, and a functional database to deposit the sequences in.

B. The database, developed in task 1, was debugged during this last reporting period, and is now fully operational and used for identifications. Sequences are being continuously added (and will be throughout this study), and searches are being conducted. Importantly, we continue to add functionality to the database through the addition of new fields.

C. Because of the relatively problem-free creation of the main database, we have also started, and have almost completed, a second parallel database that will allow us to monitor clinical isolates that come into the Department of Pathology for identification. Important/novel/interesting isolates and their sequences can then be easily imported into our main database with a few key-strokes.

D. We have assumed a role as collaborator on a new grant with investigators at Brooks Army Medical Center that will work with fungi isolated from military burn patients. A second collaboration is planned with investigators at the, Walter Reed Army Medical Center, Washington, DC, Uniformed Services University, Bethesda, MD, for fungal identification using
our database.

E. We have published a recommendation on molecular sequencing for difficult to identify fungi (14), in conjunction with the molecular diagnostics group, that we were asked to join during the last period, which represents official positions of the International Society for Human and Animal Mycology. The paper proposes official strategies for investigators using molecular identification as a diagnostic tool.

REPORTABLE OUTCOMES:

I. The two previous progress reports listed one publication per year (2006, 2007). During this third year period, we have published, in press, or submitted an additional 18 reports of our work. The reports during this period are broken down as 3 published, 4 in press, and 10 submitted. In total, 19 manuscripts have been submitted, published, or are accepted in the three years that this proposal has been funded.

II. Five additional abstracts have been presented at local, regional, or national meetings, for a total of 10 abstracts during the three years that this proposal has been funded.

III. Three invited seminars were presented:

Dec 2008 “What’s the Fungus!!? -- Can Molecular Identification Find a Place in the Clinical Mycology Laboratory?” San Antonio Center for Medical Mycology, San Antonio, TX

Jan 2009 “The Changing Landscape of Fungal Identification: Morphology and Molecules” Department of Pathology, The University of Texas Health Science Center at San Antonio”.

IV. Funding

Continuing (from 1st reporting period.) “Detection and significance of antifungal resistance in oropharyngeal candidiasis”. PI, Tom Patterson, MD, Chief, Infectious Disease and Professor, Dept. of Medicine, University of Texas Health Science Center at San Antonio. Sponsor: NIH, National Institute of Dental and Craniofacial Research (NIDCR). Awarded 07/06 and runs until 06/11. Role: Co-I.

Funding Applied For “A Biocurated Sequence Database for Fungal Identification.” Sponsor: NIH, National Institutes of Allergy and Infectious Diseases. Role: Principal Investigator
V. Publications:

From last two reporting periods

VI. Abstracts

CONCLUSION: The third year of this study prepared the database for use by populating it with Type culture sequences and additional clinical isolate sequences. We have been testing the database by using it to identify clinical isolates that come into the Fungus Testing Laboratory (Dept. of Pathology, UTHSCSA). Since the database is operational, we have added functionality to it through the use of new fields, and also created a second database that will allow us to rapidly identify and add isolates that we are interested in. We have also begun to apply our database to the main purpose of this proposal, which is a military application. Toward this end we have initiated a collaboration with investigators at Brooks Army Medical Center, who are
sending us clinical isolates from soldiers who are burn patients to test our database with. We hope to expand this collaboration in the future. A second collaboration is being discussed with investigators at Walter Reed Army Medical Center, Washington, DC, and The Uniformed Services University, Bethesda. These results have now positioned our study for the last task, which is a comparative study of our approach to identification with standard clinical approaches.

REFERENCES:

With Cystic Fibrosis. Submitted

Pulmonary Phialemonium curvatum phaeohyphomycosis in a Standard Poodle dog

D. A. Sutton a; B. L. Wickes b; E. H. Thompson a; M. G. Rinaldi c; R. M. Roland c; M. C. Libal d; K. Russell d; S. Gordon c

a Fungus Testing Laboratory, Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
b Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
c Department of Small Animal Clinical Science, Texas A & M University, College Station, Texas, USA
d Department of Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A & M University, College Station, Texas, USA

First Published on: 07 March 2008
Pulmonary *Phialemonium curvatum* phaeohyphomycosis in a Standard Poodle dog

D. A. SUTTON*, B. L. WICKESTM, E. H. THOMPSON*, M. G. RINALDI*, R. M. ROLAND‡, M. C. LIBAL§, K. RUSSELL§ & S. GORDON*

*Fungus Testing Laboratory, Department of Pathology and, ‡Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, †Department of Small Animal Clinical Science, and §Department of Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A & M University, College Station, Texas, USA

Phialemonium curvatum, frequently misidentified as an *Acremonium* species, is reported here as a new agent of pulmonary phaeohyphomycosis in a Standard Poodle dog, and added as a new species in the genus to cause mycoses in canines. *In vitro* susceptibility data, for both human and animal isolates, suggests resistance to amphotericin B and susceptibility to the triazole agents itraconazole, voriconazole, and posaconazole.

Keywords *Phialemonium curvatum*, canine, systemic phaeohyphomycosis

Introduction

Systemic phaeohyphomycosis, a disease associated with saprobioc dematiaceous fungi, has been reported infrequently in the dog. In humans *Cladophialophora bantiana* (synonyms, *Cladosporium trichoides*, *Cladosporium bantianum*, *Torula bantiana*, *Xylohypha bantiana*, *Xylohypha emmonsii*) is known to be neurotropic, and animals with systemic phaeohyphomycosis also commonly present with neurologic disease. In four reports of systemic *C. bantiana* infection in dogs the animals presented with a clinical history and/or signs of central nervous disease including tetraparesis, neck stiffness, back pain, circling, opisthotonous, nystagmus, protrusion of the nictitating membrane and/or seizures [1–4]. *Ochroconis gallopavum* [5] and *Aureobasidium pullulans* [6] have been isolated from lesions in dogs presenting with ataxia, seizures or ‘neurologic dysfunction’ and in another case dematiaceous fungi were demonstrated in the brain of an animal presenting with convulsions [7]. Rarely, animals with phaeohyphomycosis present with other primary clinical disease, as in the pug dog with a chronic skin infection and who had a dual systemic infection caused by *Bipolaris spicifera* and *Candida* (*Torulopsis*) *glabrata* [8]. Most cases of systemic phaeohyphomycosis in the dog have been diagnosed at necropsy. In the case reported here, the etiologic agent of pulmonary disease was detected antemortem.

Case report

A two-year-old male, castrated Standard Poodle was presented to the Texas A&M University Veterinary Medical Teaching Hospital in August, 2005 for definitive surgical repair of an atrial septal defect. The surgery was successful. Several days post-operatively the dog developed vasculitis, pancreatitis, as well as pneumonia, which were treated with palliative therapy in combination with enrofloxacin and ticarcillin/clavulanic acid. In October, 2005 the dog developed a chylos pleural effusion, which was corrected by surgical ligation of the thoracic duct in November 2005. The chylos effusion was thought to represent a complication of his previous open heart surgery. Following this surgery, the dog developed pneumonia again as well as a serosanguinous pleural effusion. The pneumonia was treated with enrofloxacin as well as amoxicillin/clavulanic acid. The pleural effusion became chronic and frequent thoracocenteses were performed to help control the clinical signs associated with the effusion. In December, 2005 a course of somatostatin was given but failed to resolve the effusion.
Subsequently immunosuppressive prednisone therapy was initiated. After the addition of prednisone, the dog remained asymptomatic for his pleural effusion for eight months, during which the dose was gradually reduced to an anti-inflammatory dose range and the severity of the effusion was monitored with thoracic radiographs and echocardiography. Pleurocentesis was not performed at anytime during this 8 month period, after which the dog developed dyspnea and a severe suppurative pleural effusion. In addition, right rear lameness developed and a right carpal joint tap revealed septic, suppurative effusion. A urinary tract infection was also documented at this time. The dog was treated with thoracocentesis as needed to control clinical signs of dyspnea and a combination of ticarcillin/clavulanic acid, amoxicillin/clavulanic acid, and enrofloxacin. The prednisone was continued although doses were tapered. Over the next few months the dog presented multiple times with dyspnea due to pleural effusion and thoracocentesis was performed. The cytologic examinations of pleural fluid samples varied slightly during this time period with the fluid being classified as either a transudate (low cell counts and low total protein concentration) or a modified transudate (mildly increased cell count or total protein concentration), depending on total nucleated cell counts and total protein concentrations. Several bacterial cultures of the pleural fluid yielded no growth. Given the severity of the recurrent pleural effusion in the face of reducing prednisone doses, and the historical response of the pleural effusion to immunosuppressive doses of prednisone, azathioprine was added to the drug regimen in an attempt to further immunosuppress the patient, and potentially allow the dose of prednisone to be reduced. Azathioprine was not well tolerated and was discontinued. Prednisone was continued at immunosuppressive doses and antibiotic coverage with a combination of clavamox and enrofloxacin were continued. Intermittent pleurocentesis for symptomatic pleural effusion continued although the frequency was somewhat reduced. In October, 2006 the animal was presented again with dyspnea and severe pleural effusion. New skin lesions had also developed near the right carpal footpad and over both tarsi. Cytologic examination of pleural fluid revealed a modified transudate/hemorrhagic effusion and cytologic examination of the footpad lesion revealed mild inflammation with intracellular fungal elements present. In addition, multiple lesions suggestive of dermatophytosis developed on the skin of the inguinal area. Three bacterial cultures and one fungal culture were inoculated with pleural fluid samples (collection dates 27 October 2006, 14 November 2006, 22 November 2006 and 3 November 2006 respectively). In addition, fungal cultures were started with samples from the footpad and tarsal lesions (collection date 14 November 2006). Pleural fluid samples for bacteria were inoculated onto trypticase soy agar with 5% sheep blood, MacConkey’s agar, and into tryptose broth (Becton Dickinson, Sparks, MD) and incubated at 37°C in 5% CO2 for up to 5 days. The first two pleural fluid samples yielded no bacterial growth however a fungus was isolated on the blood agar plates inoculated with each of these samples after 3 and 4 days of incubation, respectively. The third pleural fluid sample yielded Staphylococcus aureus after one day of incubation and a fungus on day 5 of incubation. The fungal isolates cultured from pleural fluid on three separate occasions appeared identical. One pleural fluid sample inoculated onto only Sabouraud dextrose agar ([SDA], BD, BBL, Sparks, MD) was negative after 18 days incubation at 25°C. Microsporum gypseum was recovered in cultures started with the tarsal skin samples. The footpad culture grew a sterile dematiaceous mould that was subsequently identified as a coelomycete morphologically resembling a Microsphaeropsis arundinis (distinct from the fungi isolated from the pleural fluid samples). At this time azathioprine was discontinued and the dog was started on amphotericin B. The dog then developed a methicillin-resistant Staphylococcus aureus infection. Due to the poor prognosis and deteriorating condition, the dog was euthanized in December 2006. Necropsy was not performed.

Identification of the etiologic agent
Three fungal isolates from pleural fluid samples and the isolate from the footpad were forwarded to the Fungal Testing Laboratory at University of Texas, San Antonio, TX for identification. The pleural fluid isolates were accessioned into their stock collection as UTHSC 06-4324, 06-4325, and 06-4326. The morphologic features of the isolates were examined on in house prepared potato flakes agar (PFA) incubated at 25°C. Growth rate was moderate and after two weeks incubation colonies were white to cream, floccose, effuse, with centrally raised areas. Discrete, moist, salmon to brownish-yellow sporodochial areas (macroscopically visible cushion-like masses of short conidiofores bearing conidia) formed throughout the cultures after 4 weeks incubation (Fig. 1 – taken at 8 weeks). Microscopically, hyaline hyphae produced numerous coils and complex fascicles (bundles of hyphae). Conidiogenous cells consisted primarily of adelophialides (short phialides lacking a basal septum) produced directly on the hyphae (Fig. 2) and from coils.

© 2008 ISHAM, Medical Mycology 46, 355–359
However longer phialides delimited by a basal septum as seen in Acremonium species were also occasionally present. Long, seta-like phialides were also produced from the sporodochia. Slightly allantoid (curved) conidia (1×1.5×4.5 μm) were borne in mucoid clusters at the apices of these conidiogenous cells. Chlamydoco-nidia were also present. Based on the features noted above, the isolate was morphologically identified as Phialemonium curvatum [9–11].

One of the isolates, UTHSC 06-4324 (=R-3884) was submitted for molecular characterization to confirm the morphologic identification. DNA was isolated from conidia recovered from a 72 h PDA plate using the Prepman Ultra reagent (Applied Biosystems, Foster City, CA) according to manufacturer’s instructions. Five microliters each of the supernatant were used in two PCR reactions to amplify the ITS and D1/D2 regions from the rDNA locus. The ITS region was amplified as described using primers ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-TCTTCCGCTTATTGATATGC-3’) [12]. The D1/D2 region was amplified using primers NL1 (5’-GCATATCAATAAGCGGAGGAAAAG-3) and NL4 (5’-GGTCCGTGTTTCAAGACGG-3) as described [13,14]. Both PCR reactions were performed in a PTC-100 thermocycler (MJ Research, Watertown, MA) using Triple Master Taq polymerase (Fisher Scientific, Pittsburgh, PA). Amplicons were purified using a Qiaquick PCR purification kit (Qiagen, Inc., Valencia, CA) and then sequenced on both strands at the UTHSCSA Advanced Nucleic Acids Core facility. The data obtained from each sequence were then used to perform BLASTn searches at the NCBI website <http://ncbi.nlm.nih.gov/BLAST/> [15]. Identifications were made at a cutoff of ≥ 98% sequence identity. The results of the two BLAST searches showed the greatest identity with other sequences deposited from P. curvatum. The top three hits for the D1/D2 sequence were P. curvatum sequences, each at 99% identity. The top three hits for the ITS search were P. dimorphosporum, P. curvatum, and P. curvatum, each at 99% identity. Since P. dimorphosporum is a synonym of P. curvatum [16], the sequence identity of the isolate was assigned as P. curvatum. The case isolate UTHSC 06-4323 (=R-3884) has been deposited in the University of Alberta Microfungus Collection under the accession number UAMH 10825. The nucleotide sequence data has been deposited into GenBank under the accession numbers EU035984 (ITS) and EU035985 (D1/D2).

The footpad isolate was accessioned as UTHSC 06-4327. After one month incubation at 25°C on a variety of media prepared in-house including PDA, V-8 agar, and carnation leaf agar [17], rare pycnidial structures developed. Conidia were narrow-cylindrical, 1–1.5×4 μm, individually subhyaline, but dark in mass. Based on these features the isolate morphologically resembled the coelomycete Microsphaeropsis arundinis. The recovery of this organism from the footpad, while potentially significant for localized infection at this site [18,19], was not contributory to systemic fungal
disease. No additional testing was performed on this isolate.

In vitro antifungal susceptibility testing

Retrospective antifungal susceptibility testing of *P. curvatum* was accomplished in a macrobroth dilution format in essential agreement with the previously published Clinical and Laboratory Standards Institute document M38-A [20]. Amphotericin B (AMB, Bristol-Meyers, Squibb, New York, NY) and caspofungin (CAS, Merck, Rahway, NJ) were tested in Antibiotic Medium 3 (Difco, Sparks, MD) while 5-fluorocytosine (5FC, Valient, Irvine, CA), fluconazole, voriconazole (FLC, VRC, Pfizer, Inc., New York, NY), itraconazole (ITC, Janssen Pharmaceutica, Piscataway, NJ) and posaconazole (PSC, Schering Plough, Galloping Hill, NJ) were tested in RPMI-1640 (Hardy Diagnostics, Santa Maria, CA). Tubes were incubated at 35°C with endpoints read at 24 and 48 h. The endpoints for AMB were the lowest concentration that inhibited visual growth, while those for 5FC and the triazoles were 80% inhibition compared to the growth control. Caspofungin endpoints were read as minimum effective concentrations (MECs) [21,22]. Results at 24/48 h were as follows in µg/ml: AMB 2/4; CAS 0.25/0.5; 5- FC >64; FLC 8/16; ITC 0.06/0.25; VRC 0.125/0.25; PSC 0.03/0.125.

Discussion

The genus *Phialemonium*, having morphologic features between the genera *Acremonium* and *Phialophora*, currently contains two species, *P. obovatum* and *P. curvatum* [9,16]. *Phialemonium obovatum* produces a distinct, pale green diffusing pigment, has obovate conidia (like an upside-down egg), and has been previously reported in German shepherd dogs causing osteolytic [23] and disseminated disease [24]. To our knowledge, this is the first report of *P. curvatum* in the veterinary literature. As the use of SDA as a sole primary isolation medium is less than optimal for the recovery of filamentous fungi, this and other etiologic agents may be under-diagnosed. Sporodochial-forming *Phialemonium curvatum* isolates were initially recognized in 2004 in human cases of hemodialysis-associated endovascular infection [10]. They have subsequently been seen in cases of endocarditis and endophthalmitis stemming from intracavernous penile autoinjections of contaminated fluids [11,25], and from intra-articular injection of corticosteroids [26]. Isolates are often misidentified as *Acremonium* species based on the overall macroscopic and microscopic similarities of the two genera.

In humans, the formation of phialides and phialoconidia within tissues in the host, termed ‘adventitious’ conidia by Liu et al. [27], appear to facilitate hematogenous dissemination inciting fungemia [16], endocarditis [28,29], and peritonitis [30]. Disseminated disease usually occurs in the setting of immune compromise. The same scenario presumably occurs in dogs. On occasion dogs operated for chylous effusion can develop non-chylous effusion post operatively that responds to immunosuppression suggesting an underlying inflammatory etiology [31]. However, dogs receiving chronic immunosuppressive agents are, like humans, at risk for infections, particularly from a variety of potential fungal pathogens [32,33]. Secondary infections may also be present and, in this case, likely contributed to the severity of the pleural effusion in the later stages of the disease.

Retrospective antifungal susceptibility results for the case isolate were similar to those seen for human isolates. Although there are no defined breakpoints for this organism, elevated MICs for AMB and 5FC suggested resistance. Clinical deterioration while on AMB therapy may support lack of efficacy for this agent. Itraconazole, as well as the newer triazoles PCZ and VCZ, demonstrated low MICs, while the FLZ MIC was somewhat elevated at 16µg/ml. Minimum effective concentrations for CAS were also low at 0.5 µg/ml; a departure from MEC values seen in human isolates.

In conclusion, *Phialemonium curvatum* is reported as a new agent of pulmonary phaeohyphomycosis in a Standard Poodle dog, and is added as a new species in the genus to cause disease in canines. Based on limited data, the triazole drugs ITZ, VRZ, and PCZ would appear appropriate for empiric therapy pending susceptibility test results.

Acknowledgements

B.L.W is supported by grant PR054228, from the U.S. Army Medical Research and Materiel Command, Office of Congressionally Directed Medical Research Programs. We thank Dora McCarthy of the Fungus Testing Laboratory for performing the antifungal susceptibility testing.

References

Fusarium species.

7 Itoh K, Desmarchelier V, Roger D, et al.

Disseminated Geosmithia argillacea infection in a German Shepherd dog

David C. Grant a, Deanna A. Sutton b, Christina A. Sandberg a, Ronald D. Tyler Jr c, Elizabeth H. Thompson b, Anna M. Romanelli d, Brian L. Wickes d

a Department of Small Animal Clinical Sciences, b Department of Pathology, Fungus Testing Laboratory, c Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia d Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA

Online Publication Date: 01 March 2009
Disseminated Geosmithia argillacea infection in a German Shepherd dog

DAVID C. GRANT*, DEANNA A. SUTTON†, CHRISTINA A. SANDBERG*, RONALD D. TYLER JR., ELIZABETH H. THOMPSON†, ANNA M. ROMANELLI§ & BRIAN L. WICKES§

Department of Small Animal Clinical Sciences, †Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, ‡Fungus Testing Laboratory, Department of Pathology, and §Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA

We report a systemic mycosis in a German Shepherd dog caused by Geosmithia argillacea. Although this etiologic agent microscopically resembles a Penicillium species, and is histopathologically compatible with members of the genus Aspergillus, morphologic features and molecular characterization clearly separate it from these genera. This appears to be the first report of disseminated disease by this species in humans or animals. In vitro antifungal susceptibility testing suggests resistance to amphotericin B and voriconazole and susceptibility to caspofungin, itraconazole, and posaconazole.

Keywords Geosmithia argillacea, German Shepherd dog

Introduction

Disseminated opportunistic mycoses are infrequently reported in dogs. The most common etiologic agents are species of Aspergillus, particularly A. terreus and A. deflectus [1–12]. There are rare reports of disseminated disease caused by other hyaline genera such as Penicillium [13], Paecilomyces [14], Sagenomella [15], and agents of adiaspiromycosis [16], as well as isolated reports of systemic phaeohyphomycosis [17]. The majority of these opportunistic infections have occurred in German Shepherd dogs leading to suspicion of a breed-related immunodeficiency, although studies by Day et al. failed to identify the specific defect [3]. In fact, German Shepherd male dogs have an odds ratio of 49 for disseminated aspergillosis relative to a background hospital population, and female dogs have an odds ratio of 2.9 [12]. Some of the manifestations of these disseminated mycoses in dogs have included discospondylitis, osteomyelitis, spinal hyperpathia, paralysis, pyrexia, weight loss, anorexia, uveitis, endophthalmitis, lameness, head tilt, nystagmus, renal failure, and urinary incontinence. Response to therapy with amphotericin B or triazole antifungals has been marginal. We report here the first case of disseminated infection with Geosmithia argillacea.

Case report

A 4-year-old female, spayed German Shepherd dog presented to the Virginia-Maryland Regional College of Veterinary Medicine in February 2008, for evaluation of acute onset glaucoma of the right eye. Moderate aqueous flare and cells, iris bombe, and preiridal membrane were noted on slit lamp biomicroscopy. Vitreal debris and exudative retinal detachment were noted on ocular ultrasonography. The intraocular pressure was 27 mmHg by rebound tonometry. Panuveitis and secondary glaucoma of the right eye were diagnosed. There were no abnormalities detected in the left eye. Topical prednisolone acetate, timolol maleate, and dorzolamide and oral carprofen were prescribed. Due to the combined presence of lethargy, spinal hyperpathia, and panuveitis, an underlying systemic disease was suspected as the cause of the ocular abnormalities and thus the dog was further evaluated. Negative antibody titer results were obtained for Leptospira species and Brucella canis (Virginia Department of Agriculture and Consumer Services, Wythe-
ville, VA) and Aspergillus fumigatus (University of Tennessee Veterinary Medical Laboratory, Knoxville, TN). Urine was negative for Blastomyces dermatitidis antigen (MiraVista Diagnostics, Indianapolis, IN). Results of a complete blood cell count and biochemical profile were unremarkable. Hematuria and pyuria were noted, but a urine aerobic bacterial culture was negative. Thoracic radiography revealed normal cardiac and pulmonary structures. Radiography of the spine revealed osseous proliferation with concurrent lysis of the vertebral endplates of thoracic vertebrae four, five and six consistent with discospondylitis. Similar changes were noted in multiple sternebrae. Fine-needle aspirates of these sternebrae were evaluated cytologically and yielded peripheral blood only. Ultrasonography of the abdomen revealed bilateral renal pelvic dilation with all other organs appearing normal. In March 2008 the dog was evaluated for response to ocular medications and to further pursue the cause of discospondylitis. A previously undetected systolic ejection murmur was ausculted over the left heart base. Echocardiography identified a small patent ductus arteriosus, but no valvular lesions suggestive of endocarditis or cause for the ejection murmur were found. The dog was blind in the right eye with end-stage glaucoma with buphthalmos. The intraocular pressure was 50 mmHg by rebound tonometry. Rubeosis iridis and posterior and peripheral anterior synechiae of the iris were noted in the right eye. The left eye had fibrin strands in the anterior chamber and multifocal chorioretinitis in the tapetal fundus. Enucleation of the right eye for histopathologic diagnosis was performed. Floroscopic-guided core biopsies of multiple sternebrae were obtained. Aerobic bacterial cultures of a vitreal aspirate, sternebral biopsy, and urine were negative. Carprofen and tramadol were given post-operatively for pain control. Histopathologic evaluation of the eye identified lymphoplasmacytic panuveitis, intra-retinal hemorrhage, lens capsule rupture with pyogranulomatous inflammation, and retinal detachment with exudative vitreitis. Histopathologic evaluation of the sternebrae by hematoxylin and eosin staining revealed mild lamellar bone resorption with fibrous replacement. Fungal Gomori methenamine silver (GMS) stains revealed septate, dichotomously branching hyphae measuring 3–5 μm in diameter within the lens, retina, and sternebrae (Fig. 1 & 2). Aspergillus terreus was suspected based on histopathology compatible with aspergillosis and the reported prevalence of this organism in German Shepard dogs. A urine sample was obtained by cystocentesis and inoculated onto Sabouraud dextrose agar (SDA) (Remel, Lenexa, KS). The microscopic morphology of the isolate grown on this medium after 14 days incubation at 30°C resembled a Penicillium species, although the isolate was subsequently identified as Geosmithia argillacea at the University of Texas Health Science Center at San Antonio (UTHSC). No antifungal treatment was administered. Over the next month the dog became increasingly agitated and developed a head tilt and nystagmus. Examination of the left eye revealed more severe posterior segment disease, with vitreal debris, chorioretinal scarring and focal retinal detachment. Humane euthanasia was elected and a necropsy was performed.

At necropsy the pleural surfaces were red and granular, and multiple 0.5–1mm nodules were dispersed throughout the lungs. The liver was diffusely congested and slightly enlarged. The kidneys were irregular and red and contained multifocal, small,
white-tan, granular nodules most prominent along the pelvises (Fig. 3). The spleen was diffusely enlarged and mottled red-white. The third, fourth, and fifth sternebrae were enlarged with a firm proliferation between the articular surfaces. The bodies of the sternebrae were osteolytic and filled with a brown-tan granular caseous material. The ventral aspects of the fifth, sixth, and seventh thoracic vertebrae were thickened with firm nodules along the articular surfaces. There was marked osteolysis of the central vertebral bodies and they were filled with a white caseous material. The right cerebrum of the brain was moderately firm but the remainder of the central nervous system was unremarkable. Microscopically the lungs, pancreas, liver, kidney, and cerebrum had multifocal regions of granulomatous inflammation often associated with blood vessels. Some granulomas from each of these organs were centrally necrotic and contained septate, dichotomously-branching fungal hyphae with bulbous ends (Fig. 4). There was extensive fibrosis around regions of inflammation within the pancreas and kidneys. The affected sternebrae and thoracic vertebral bodies also had extensive osteolysis, fibrosis, necrosis and multifocal regions of granulomatous inflammation that crossed articular surfaces. Similar hyphae were seen within necrotic regions of bone. Gomori methenamine silver stains documented hyphae in all affected tissues. The affected sternebrae and thoracic vertebral bodies also had extensive osteolysis, fibrosis, necrosis and multifocal regions of granulomatous inflammation that crossed articular surfaces. Similar hyphae were seen within necrotic regions of bone. Gomori methenamine silver stains documented hyphae in all affected tissues. Tissue samples from the left cerebrum and cerebellum, affected sternebrae and vertebrae, kidney, and bladder were inoculated onto SDA. With the exception of brain tissue, all other samples grew a fungus morphologically identical, both macroscopically and microscopically, to the urine isolate previously identified as Geosmithia argillacea. Molecular confirmation of the same organism from both the urine and the vertebra confirmed Geosmithia argillacea as the etiologic agent of disseminated disease.

Identification of the etiologic agent

Both the urine isolate and the necropsy thoracic vertebra isolate were forwarded to the Fungus Testing Laboratory for molecular and morphologic characterization and were accessioned into their stock collection as UTHSC R-4148 and R-4234, respectively. Isolates were grown for 20 h at 30°C on potato dextrose agar (Difco, Detroit, MI). A small amount of hyphae was removed and suspended in 50 μl of Prepman Ultra reagent (Applied Biosystems, Foster City, CA) in a 0.5 ml microfuge tube. The suspension was heated for 15 min at 100°C and then pelleted for 5 min at 14,000 g in a microfuge according to the manufacturer’s instructions. PCR reactions were performed directly on 5 μl of the Prepman supernatant in a 50 μl reaction using TripleMaster Taq DNA polymerase (Fisher Scientific, Pittsburgh, PA) according to the manufacturer’s instructions. ITS amplicons were obtained using primers (ITS1 and ITS4) and PCR conditions as previously described [18]. D1/D2 PCR amplicons were obtained using primers (NL-1 and NL-4) and PCR conditions as described [19,20]. Amplifications were performed in a PTC-100 thermocycler (MJ Research, Watertown, MA) and amplicons of the expected size were visualized by running a 15 μl aliquot of each PCR reaction on a 0.7% agarose gel followed by staining with ethidium bromide and viewed by ultraviolet transillumination. The remaining PCR template was prepared for sequencing by cleaning with a QIAquick PCR purification column (Qiagen, Valencia, CA). Purified templates were sequenced at the UTHSCSA Advanced Nucleic Acids Core facility using the same primers for ITS and D1/D2 amplification. Sequences were then used to perform individual BLASTn (Basic Local Alignment Search Tool) searches using the NCBI (National Center for Biotechnology Information) BLAST database. Genbank accession numbers were assigned as follows: R-4148 ITS, D1/D2 (ACCESSION# EU862335, ACCESSION#EU862336), R-4234 ITS, D1/D2 (ACCESSION# EU862337, ACCESSION# EU862338). A BLASTn search of the R-4148 and R-4234 ITS and D1/D2 sequences returned identical results. The three highest% identities for the ITS region were: (1) Geosmithia argillacea 525/541 (97%) accession #AF033389, (2) Talaromyces eburneus (the teleomorph of Geosmithia argillacea) 461/477 (96%) accession #AB176614, and (3) Monascus fumeus.

Fig. 3 The kidney is irregular and red with multifocal, large, white-tan, granular nodules most prominent along the renal pelvis. There is a wedge shaped pale area extending from the cortex to the medulla consistent with an infarct.
508/584 (86%) accession # DQ978996. Analysis of the Genbank alignments revealed that the mismatches were in both the ITS1 and ITS2 regions. No mismatches occurred in the 5.8s rDNA region. The three highest% identities for the D1/D2 sequence were: (1) Geosmithia argillacea 614/614 (100%) accession # AB047236, (2) Geosmithia argillacea 614/614 (100%) accession # AB047235, and (3) Geosmithia argillacea 613/614 (99%) accession # AB047238.

The macroscopic morphology of G. argillacea on malt extract agar (MEA) (Remel, Lenexa, KS, dehydrated and prepared in-house) is depicted in Fig. 5A (16 days at 23°C) and 5B (8 days at 35°C). Growth was slow and restricted at the lower temperature, attaining 21-23 mm in diameter after 16 days as compared to 34–36 mm in 8 days at the higher temperature. Colonies at 23°C were cream to buff-colored with ill-defined margins while those at 35°C were similarly colored with entire margins. Reverse and obverse colony colors were the same. Temperature studies conducted on potato flakes agar (PFA) tubed media, prepared in-house, demonstrated good growth at 37, 40, and 45°C but no growth at 50°C. Maximum growth temperatures are presumed to be near 50°C based upon our studies and those of earlier investigators [21,22]. Microscopic features observed from a PFA slide culture preparation included rough, hyaline, septate, stipes, often branched, ranging from 70–200 μm in length, penicilli that were monoverticillate to biverticillate (asymmetric) to terverticillate, cylindrical, appressed, slightly roughened phialides measuring 10–12 × 2–3 μm and tapering at the apex, and smooth hyaline conidia borne in long, columnar chains. Conidia, measuring 2.5–5

\[\times 1.5–2.5 \mu m, \text{ were initially cylindrical to cuniform (wedge-shaped) and became ellipsoidal to ovoid at maturity (Fig. 6). Based on the sequence identities and the morphologic features, both isolates were identified as Geosmithia argillacea and have been deposited into the University of Alberta Mold Herbarium under the accession numbers UAMH 10932 (R-4148, urine) and UAMH 10933 (R-4234, vertebra).}\]

\[\text{In vitro antifungal susceptibility testing}\]

Antifungal susceptibility testing of G. argillacea was performed on the isolate from the vertebra. It was accomplished in a macrobroth dilution format in essential agreement with the previously published Clinical and Laboratory Standards Institute document

© 2009 ISHAM, Medical Mycology, 47, 221–226
respectively. Results for the triazoles were 0.25 and 0.125 and 0.06 and 0.06 μg/ml, respectively. No defined breakpoints are currently available for these antifungal agents against this species. Amphotericin B (AMB, Bristol-Meyers, Squibb, New York, NY) and caspofungin (CAS, Merck, Rahway, NJ) were tested in Antibiotic Medium 3 (Difco, Sparks, MD) while, voriconazole (VRC, Pfizer, Inc., New York, NY), itraconazole (ITC, Janssen Pharmaceutica, Piscataway, NJ) and posaconazole (PSC, Schering Plough, Galloping Hill, NJ) were tested in RPMI-1640 (Hardy Diagnostics, Santa Maria, CA). Concentrations tested for all drugs ranged from 0.03 to 16 μg/ml. Tubes were incubated at 35°C and were read against a positive growth control tube at either 24 and 48 h (AMB and CAS) or 48 and 72 h (ITC, VRC, PSC), depending upon the growth rate of the organism in the test medium. Endpoints for AMB were the lowest concentration that inhibited visual growth, while those for the triazoles (ITC, VRC, PSC) were 80% inhibition compared to the growth control. Caspofungin endpoints were read as minimum effective concentrations (MECs) [24,25]. Results for AMB and CAS were 1 and 2, and 0.125 and 0.25 μg/ml, respectively. Results for the triazoles were 0.25 and 0.25, >16, and 0.06 and 0.06 μg/ml for ITC, VRC, and PSC, respectively. No defined breakpoints are currently available for these antifungal agents against this organism.

Discussion

The genus *Geosmithia* currently contains numerous species formerly classified as *Penicillium*. *Geosmithia argillacea* (Stolk, H.C. Evans & T. Nilsson) [26], was originally described as a new thermotolerant *Penicillium* species by Stolk et al. who isolated the type strain from a high-temperature mine waste tip in 1969 [21]. In 1979 Pitt [22] erected the genus *Geosmithia* to distinguish isolates previously known as *Penicillium* spp. but which formed conidia borne as cylinders from cylindrical, rough-walled phialides lacking narrow necks, as in *Penicillium* and *Paecilomyces*, and that produced conidia that were not typically some shade of green. In 1994, Yaguchi et al. [27] described a new species of *Talaromyces*, *T. eburneus*, from the soil in Taiwan. In a subsequent investigation [28] of an outbreak of fungal contamination of pasteurized pineapple juice in the beverage industry, he recovered a strain of *Talaromyces eburneus* having a *Geosmithia* anamorph (asexual form). As this species had not been previously regarded as thermophilic, sequence analysis was performed to compare this species with the type strain of *T. eburneus*, and 3 strains of *Geosmithia argillacea*. The D1/D2 regions of 28S rDNA for all strains were identical, thereby confirming *T. eburneus* as the teleomorph (sexual form) of *Geosmithia argillacea* [22,28]. The etiologic agent in the dog in the current report was initially thought to be a *Penicillium* species based on its microscopic morphology, however a more detailed examination of the morphologic features combined with molecular characterization confirmed the identification as *G. argillacea* and emphasizes the utility of ITS and D1/D2 sequencing. Previous reports of disseminated infection with *Penicillium* species may have suffered from similar misidentification.

To our knowledge this is the first report of a *Geosmithia* species causing disseminated disease in either humans or animals. *Geosmithia argillacea* was isolated from a pleural cavity drain from a human, though the method of determining fungal identity was not described [29]. More recently, *G. argillacea* has been considered a potential pathogen in cystic fibrosis lung disease [30]. The breed and gender of the dog and the physical manifestations of infection with *Geosmithia* in this report were typical of those associated with disseminated aspergillosis [12]. We suspect this dog may have had a predisposing immunodeficiency, though tests of immune function were not performed due to financial constraints. Antifungal therapy was not administered as prognosis for other seemingly similar disseminated mycoses such as aspergillosis and penicilliosis is so poor. *In vitro* antifungal susceptibility testing performed post-mortem suggested susceptibility to itraconazole, posaconazole, and caspofungin raising the possibility that treatment may have had a beneficial effect. The ability of these drugs to penetrate all infected tissues, however, is questionable. Amphotericin B may also have been efficacious had a liposomal...
preparation been used, while voriconazole clearly lacked activity, in vitro.

Acknowledgements

B.L.W. is supported by grant #PR054228 from the U.S. Army Medical Research and Material Command, Office of Congressionally Directed Medical Research Programs and A.M.R. is supported by NIDCR grant # DE14318 (CO*STAR). The authors thank Dora McCarthy and Annette Fothergill for performing the antifungal susceptibility testing. The authors thank Dawn Jones and Susan King for isolation and preparation of the organism for identification and transport.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

This paper was first published online on iFirst on 23 January 2009.
Disseminated phaeohyphomycosis in weedy seadragons (Phyllopteryx taeniolatus) and leafy seadragons (Phycodurus eques) caused by species of Exophiala, including a novel species

Abstract. During the period from January 2002 to March 2007, infections by melanized fungi were identified with greater frequency in aquarium-maintained leafy seadragons (Phycodurus eques) and weedy seadragons (Phyllopteryx taeniolatus), pivotal species to the educational and environmental concerns of the aquarium industry and conservation groups. The objective of this study was to characterize the pathology and identify fungi associated with phaeohyphomycotic lesions in these species. Samples from 14 weedy and 6 leafy seadragons were received from 2 institutions and included fresh, frozen, and formalin-fixed tissues from necropsy and biopsy specimens. Fresh and frozen tissues were cultured for fungi on Sabouraud dextrose agar only or both Sabouraud dextrose agar and inhibitory mold agar with gentamicin and chloramphenicol at 30 C. Isolates were processed for morphologic identification and molecular sequence analysis of the internal transcribed spacer region and D1/D2 domains of the large subunit ribosomal RNA gene. Lesions were extensive and consisted of parenchymal and vascular necrosis with fungal invasion of gill (11/20), kidney (14/20), and other coelomic viscera with or without cutaneous ulceration (13/20). Exophiala sp. isolates were obtained from 4 weedy and 3 leafy seadragons and were identified to species level in 6 of 7 instances, namely Exophiala angulospora (1) and a novel species of Exophiala (5), based on nucleotide sequence comparisons and phylogenetic analyses. Disseminated phaeohyphomycosis represents an important pathologic condition of both weedy and leafy seadragons for which 2 species of Exophiala, 1 a novel species, have been isolated.

Key words: Exophiala; phaeohyphomycosis; Phycodurus eques; Phyllopteryx taeniolatus; seadragons.

Introduction

The term “phaeohyphomycosis” is collectively used for cutaneous, subcutaneous, and systemic diseases caused by several genera of septate dark-walled fungi, referred to as “dematiaceous,” “phaeoid,” or “melanized.” Melanized fungi exhibit a high degree of molecular diversity with more than 100 species in 60 genera. These agents, classified in various orders of the fungal kingdom, are ubiquitous and primarily recognized as soil saprophytes, plant pathogens, and environmental contaminants. Melanized fungi have been associated with disease in humans, mammals, birds, amphibians, reptiles, fish, and invertebrates.

Of special interest are members of the order Chaetothyriales, such as Exophiala and Cladophialophora, which are ecologically different and seem to be associated with assimilation of alkylbenzenes, compounds that are also present in vertebrate bodies. These fungi are regularly encountered as causative agents of mycoses of medical and veterinary importance; only Onygenales, the order containing dermatophytes and dimorphic pathogens, has a comparable number of clinically relevant fungi.

Species of Exophiala represent a source of emerging fungal cutaneous, subcutaneous, and systemic infections, especially in immunocompromised human patients and animals. In teleostean and cartilaginous fishes, Exophiala sp. infection has been reported in Atlantic salmon (Salmo salar L.) and cutthroat trout (Oncorhynchus clarkii), caused by Exophiala salmonis, in channel catfish (Ictalurus punctatus) and smooth dogfish (Mustelus canis) due to Exophiala pisciphila, and in captured King George whiting (Sillaginodes punctata) in associa-
tion with an Exophiala sp. Most recently, a novel species of Exophiala was isolated from Japanese flounder (Paralichthys olivaceus).³³

Seadragons are marine fish of the family Syngnathidae, which include the fused jawed fishes, such as seahorses and pipefish. Seadragons inhabit the shallow, temperate waters along the southern and western Australian coastline and Tasmania and are listed as near threatened on the Red List of Threatened Species by the International Union for the Conservation of Nature and Natural Resources (www.iucn.org). There are 2 main genera with a single species in each genus, namely the weedy seadragon (Phyllopteryx taeniolatus) and the leafy seadragon (Phycodurus eques). Seadragons are significant exhibit species of the aquarium industry and conservation groups because of their importance to research and educational efforts focused on marine coastal habitat conservation and ecosystem sustainability (www.dragonsearch.asn.au).¹⁴,¹⁵ Over a period of 5 years from January 2002 to March 2007, slightly more than 400 seahorses, pipefish, and seadragons from several zoos and approximately a dozen commercial aquariaums have been submitted to the Connecticut Veterinary Medical Diagnostic Laboratory (CVMDL; University of Connecticut, Storrs, CT) for necropsy. Of these syngnathid submissions, infections with melanized fungi were prevalent in leafy and weedy seadragons from 2 different aquariums. This report describes the characteristics of disseminated phaeohyphomycosis in seadragons caused by Exophiala spp., including infection by a novel (i.e., as yet undescribed) species referred to as “Exophiala sp. nov.”

Material and methods

Animals

Specimens consisted of juvenile and adult, captive-hatched seadragons reared in Australia prior to legal importation into the United States. Gender was undetermined for most animals due to sexual monomorphism when not in breeding condition. Animals were housed in groups of 1–10 animals in both species-specific and mixed species groups. Animals were maintained in filtered, natural, or artificial sea water at temperatures of 14–16°C, pH 8.0–8.2, total ammonia nitrogen <0.07 mg/l, nitrite 0 mg/l, nitrate <30 mg/l, and salinity 29–36 g/l in tanks ranging from 1,000 to 8,000 liters. Life support systems included mechanical and biological filtration with protein skimmers and ultraviolet and ozone disinfection. Diet consisted of live and frozen mysis shrimp (Mysisidae sp.), frozen zooplankton, and live brine shrimp (Artemia salina).

Weedy and leafy seadragons were submitted as part of routine diagnostic investigations to the CVMDL between January 2002 and March 2007. Fish were submitted from 2 different commercial aquariums located in 2 U.S. states and were presented either live or fixed in formalin. Seadragons were euthanized using an approximate dose of 400 mg/l of tricaine methanesulfonate and were observed for 15–30 min past the last active opercular movement in consideration of the guidelines provided by the American Veterinary Medical Association at the CVMDL or at the submitting institutions, or the animals died naturally. After initial identification of Exophiala sp., some animals were treated with little success using a variety of topical and systemic antifungal agents, including fluconazole,¹⁷ voriconazole,¹⁷ itraconazole,¹⁷ terbenfine,²³ 37% w/v formaldehyde solution,²⁴ methylene blue,²⁴ malachite green,²⁴ acriflavin,²⁴ and Virkon.²⁵ Therapy for concurrent bacterial and protozoal infections varied for each case and included at least 1 of the following drugs: ceftazidime,²⁶ oxytetracycline, triple sulfa powder, metronidazole, kanamycin sulfate powder,²⁷ and chloroquine.²⁸

Necropsy and histopathology

Gross necropsies were performed within 12 hr of death. Representative tissue samples or swabs of lesions were aseptically collected for wet mount preparations and microbial culture. Animals were dissected into multiple tissue samples or had gills and coelomic viscera exposed by removal of the operculums and a ventral midline incision with or without removal of the lateral body wall. Tissue samples or partially opened whole specimens were then fixed by immersion in 10% neutral buffered formalin. Bony tissues were decalcified after fixation using 0.5 M (molar [solution]) ethylenediamine tetra-acetic acid for 24–36 hr prior to trimming.

For preparation of histologic sections, formalin-fixed tissue samples were trimmed to fit plastic cassettes, routinely processed, embedded in paraffin, sectioned at 4 μm, mounted on glass slides, stained with hematoxylin and eosin, and then examined by bright field microscopy. Additional sections were stained with Fontana-Masson (FM), periodic acid-Schiff (modified McManus stain), and Grocott’s methenamine silver techniques to highlight histomorphologic and staining characteristics of the fungi.²⁶,⁵⁹

Microbial culture and fungus identification

Tissue samples and swabs were submitted for microbial testing, which included aerobic bacterial culture and separate fungal culture. Bacterial cultures from 4 weedy seadragons and 1 leafy seadragon were performed at a commercial veterinary diagnostic laboratory (IDEXX Laboratories, North Grafton, MA). Fungal cultures were performed at the CVMDL, where tissue samples were seared, sliced with a sterile surgical blade, and sampled with a cotton-tipped swab, which was then used to streak plates of Sabouraud dextrose agar¹ and inhibitory mold agar with gentamicin and chloramphenicol¹ in duplicate; plates were sealed using parafilm and incubated at 30°C. Swabs submitted for fungal culture were used directly to streak duplicate plates of the 2 types of media, which were then incubated at 30°C. Plates were incubated for up to 4 weeks and examined weekly for growth of mold. In cases in which
an olivaceous to black, velvety mold was isolated, 1 plate of
the pair was transferred to the Fungus Testing Laboratory
(The University of Texas Health Science Center at San
Antonio [UTHSCSA], San Antonio, TX) for morphologic
and molecular identification.

Isolates were then transferred onto potato flakes agar
(PFA) plates prepared in house and incubated at 25°C.55
Both the macroscopic morphology of the colonies and the
diagnostic microscopic features were determined from this
medium after approximately 12 days of incubation.
Microscopic features were studied using the slide culture
technique26 and modified to contain PFA rather than water
agar for both the nutrient and the moisture source.
Temperature studies were performed at 30°C, 35°C, and
40°C on PFA slants; nitrate assimilation was assessed using
previously described methods.49 Brown pigment formation
was evaluated on Saboraud dextrose agar.

Molecular fungus identification and phylogenetic analysis

Genomic DNA was extracted from conidia recovered from
a 72-hr PFA plate using Prepman Ultra reagent4 according to the manufacturer's instructions. Two poly-
merase chain reaction (PCR) amplifications were per-
formed on each isolate, and molecular analyses were
focused on ribosomal genes for phylogenetic inference.
The first reaction amplified the internal transcribed spacer
(ITS) region located between the 18S and 28S rRNA genes
using primers ITS1 (5'-TCCGTAGGTGAACCTGCGG-
3') and ITS4 (5'-TCCCTCCGTTATGGATATGC-3').21,65
The second reaction amplified the D1/D2 region of the 28S
rRNA gene using primers NL-1 (5'-GCATAACA-
TAAGCGGAGGAAAG-3') and NL-4 (5'-GGTCC-
GGTTTACAGACG-3').34,48 Both PCR amplifications
were performed in 50-µl reaction volumes using Triple
Master Taq DNA polymerase,6 each deoxyribonucleotide
triphosphate (dNTP),1 and primers (prepared at the
UTHSCSA Nuclear Core Facility) at concentrations
specified by the manufacturer's instructions. All PCR
amplifications were performed in a commercial thermo-
cycler using a preprogrammed 3-step protocol as the
standard program for all reactions. Cycling conditions
consisted of an initial denaturation step at 95°C for
10 min, followed by 30 cycles, each cycle consisting of
denaturation at 95°C for 1 min, annealing at 58°C for
1 min, and extension at 72°C for 1 min, with a final
extension at 72°C for 10 min. Amplification success was
confirmed by agarose gel electrophoresis. The remaining
template DNA was then cleaned by polyethylene glycol
precipitation.7 Sequencing was performed on both strands
using the PCR primers as sequencing primers at the
UTHSCSA Advanced Nucleic Acids Core Facility. The
resultant sequences were compared with available se-
quen ces at the National Center for Biotechnology
Information using BLASTn (nucleotide database using a
cgi) searches of the databases,1,2 as well as by comparison
to the sequence database of black molds at the Centraal-
bureau voor Schimmecultures (CBS; http://www.cbs.knaw.
nl/databases/). The ITS sequences were aligned using
BioNumerics 4.6 software.a A substitution model was
calculated using MrAIC (http://www.abc.sel/~nylander), and
the tree was built using TREEFINDER algorithm (http://
www.treefinder.de) version June 2007 and bootstrapping with
1,000 replicates; values >80 are shown with the branches.

Results

Animals

Twenty aquarium-held weedy (14) and leafy (6) seadragons were evaluated. Animals were in the
collection for 2 weeks to 4 years (mean = 32 weeks)
before onset of clinical signs. Duration of clinical
signs ranged from 1 week to 6 months (mean = 8
weeks). Clinical signs included weakness, loss of
appetite, lethargy, increased respiratory rate and
effort, abnormal buoyancy, listing, piping at the
surface of the water, and death. Fungal dermatitis
was diagnosed antemortem in 6 cases via cytology or
biopsy of lesions, and antemortem fungal culture
isolated Exophiala sp. nov. in 2 such cases.

Pathologic findings

Seadragons were submitted to the CVMDL with
either antemortem evidence of fungal infection from
cytology or biopsy or black lesions suggestive of
phaeohyphomycosis. Lesions were identified in
skeletal muscle (18/20), skin (16/20), kidney (14/20),
gill (11/20), swim bladder (7/20), heart (2/20), liver (3/
20), spleen (1/20), muscle coats and serosa of the
intestine (2/20), mesentery (1/20), and extradural
sinus and spinal cord (6/20); 15 seadragons had
lesions in 3 or more of these tissues (Table 1). The
most obvious gross lesions were identified in the skin
and consisted of 1 to several well-demarcated,
occasionally extensive, ulcerations, often with raised
black margins, located randomly over the head,
trunk, dorsum of the tail, at the base of fins, or in
skin around the cloaca (Fig. 1). Microscopically,
cutaneous lesions were characterized by ulcerations
of the epidermis and extensive mats of fungal hyphae
that invaded dermal fibrous connective tissue and
extended into the underlying hypodermis, fascia, and
skeletal muscle with myonecrosis and mild histiocytic
infiltrates.

Multiple, well-demarcated, and occasionally
extensive black foci were identified grossly in the kidney,
gill, swim bladder, and intestinal wall of seadragons
upon internal examination. Microscopically, renal
lesions consisted of extensive regions of necrosis
involving tubules, hematopoietic interstitium, and
sinusoids that were infiltrated throughout by fungal
hyphae and corresponded to grossly visible black,
frangible parenchyma (Fig. 2). Hyphae invaded the
overlying epaxial muscle with myonecrosis and mild
histiocytic infiltrates. Gill lesions consisted of focally
extensive necrosis of filaments, their lamellae, the
underlying connective tissue, and blood vessels of the gill arch, with minimal to occasionally moderate loosely organized infiltrates of macrophages (Fig. 3). Lesions in the intestine and swim bladder were limited to the muscle coats and serosa and were characterized by foci of myonecrosis, infiltrated by fungal hyphae, and minimal to moderate, loosely organized infiltrates of macrophages. In the liver, hyphae invaded venules and sinusoids with dissociation and necrosis of hepatocytes and pancreatic acini in 2 instances. Hyphae coursed through venules of the liver and the reticuloendothelial stroma of the spleen and invaded mesenteric blood vessels in 1 specimen. Small numbers of hyphae were present in the extradural sinus of 6 specimens and invaded the spinal cord in 3 of these instances.

Lumina of blood vessels of gill and viscera contained intertwined fungal hyphae together with variable amounts of fibrin, serum protein, and necrotic leukocytes, accompanied by necrosis of vessel walls (Fig. 4). Fungal hyphae were 2–3 μm in width, slender, filamentous, and septate, with right-angle branching and thin parallel walls that stained brown in routine hematoxylin and eosin–stained sections and in sections prepared using the Fontana-Masson technique, consistent with the expected histochemical staining reaction of melanized fungi (Fig. 5). Ciliated protozoa, consistent with *Uronema* sp., and aggregates of Gram-negative, rod-shaped bacteria were identified on cytology of affected gill and skin in 5 cases. Other pathologic findings included enteric coccidiosis in weedy seadragons (2/20), biliary (1/20) and renal myxozoanosis (5/20) in weedy seadragons, and parasitic (3/20) and mycobacterial (1/20) granulomas in visceral organs.

Microbial culture and fungus identification

Fungal cultures were attempted in 4 weedy and 3 leafy seadragons involving 1 or more samples from kidney, skin, liver, and/or spleen; isolates were identified to species level in 6 of 7 instances (Table 2). Isolates grew on both Sabouraud dextrose agar and inhibitory mold agar with gentamicin and chloramphenicol at 30°C over a period of 1–3 weeks. Isolates yielded velvety, olivaceous, or brown-black molds and were referred to the Fungus Testing Laboratory over several months. In most isolates, the colonies were generally restricted, were somewhat moist initially, had a moderate growth rate, were olivaceous to olivaceous-gray with a black reverse, and became velvety at maturity. Both *E. angulospora* and *Exophiala* sp. nov. were initially yeast-like but displayed budding cells throughout their growth cycle. These cells soon germinated with the formation of pale, olivaceous torulose hyphae. Conidiation was annelidic, and anelloconidia were either single-celled (2–3 μm × 4–5 μm for *Exophiala* sp. nov.; Fig. 6) or commonly angular (2–3 μm × 4–6 μm for

Table 1. Anatomic distribution of phaeohyphomycotic lesions in seadragons in the current study.*

<table>
<thead>
<tr>
<th>Animal ID/species</th>
<th>Gender</th>
<th>Aquarium</th>
<th>Gill</th>
<th>Skin</th>
<th>Skeletal muscle</th>
<th>Kidney</th>
<th>Swim bladder</th>
<th>Heart</th>
<th>Intestine</th>
<th>Mesentry</th>
<th>Liver</th>
<th>Spleen</th>
<th>Extrudal sinus and spinal cord†</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002 #1 LSD</td>
<td>F</td>
<td>NEAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003 #1 WSD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2003 #2 WSD</td>
<td>M</td>
<td>NEAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003 #3 LSD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2003 #4 LSD</td>
<td>F</td>
<td>NEAq</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003 #5 WSD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003 #6 LSD</td>
<td>F</td>
<td>NEAq</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2004 #1 WSD</td>
<td>F</td>
<td>AAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 #2 WSD</td>
<td>U</td>
<td>AAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 #3 LD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 #4 WSD</td>
<td>U</td>
<td>AAq</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005 #1 WSD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2005 #2 WSD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005 #3 WSD</td>
<td>F</td>
<td>AAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005 #4 WSD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005 #5 WSD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006 #1 WSD</td>
<td>M</td>
<td>AAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006 #2 WSD</td>
<td>U</td>
<td>NEAq</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006 #3 WSD</td>
<td>F</td>
<td>NEAq</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2007 #1 LSD</td>
<td>F</td>
<td>NEAq</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>11</td>
<td>16</td>
<td>18</td>
<td>14</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* LSD = leafy seadragon (Phycodurus eques); WSD = weedy seadragon (Phyllopteryx taeniatus); M = male; F = female; U = undetermined; NEAq = New England Aquarium, Boston, MA; AAq = Adventure Aquarium, Camden, NJ.
† Fungal hyphae were present in the spinal cord.
E. angulospora). Conidia were borne in slimy masses at the tips of flask-shaped to cylindrical annellides and from intercalary conidiogenous loci. All isolates assimilated nitrate, none were able to grow at 35°C, and none produced a brown diffusible pigment on Sabouraud dextrose agar suggestive of E. dermatitidis. Given the very similar microscopic and physiologic profiles of several species of Exophiala, only E. angulospora, which produces distinct angular annellidia, could be identified with reasonable certainty based upon morphologic features alone. A variety of Gram-negative bacteria, including Vibrio sp. and Pseudomonas sp., were cultured from lesions. No species of bacteria was consistently isolated from these lesions.

Molecular fungus identification and phylogenetic analysis

The ITS tree was built using TREEFINDER with substitution model GTR+G according to MrAIC calculations. The same program calculated bootstrapping values that gave 100% for all branches. Isolates were found to belong to distinct species of Exophiala. In addition to E. angulospora, a second, hitherto unnamed species was encountered, clearly separate from any other taxon based on rDNA ITS sequences. Because many species of black yeasts differ by mutations rather than by indels or amplicon lengths, greater than 1% ITS sequence diversity exceeds the species level in this group. Figure 7 gives an overview of clades of nearest taxa in the order Chaetothyriales. Sequences dH16401, dH13448, and CBS 119918 represent isolates obtained from 1 leafy seadragon sampled in 2000 by 1 of the 2 aquariums. These sequences were initially identified as E. pisciphila but were subsequently found to be Exophiala sp. nov. when submitted to the CBS for molecular characterization along with sequences from other Exophiala sp. isolates obtained from seadragons and other aquatic animals. Tissue samples for histopathologic evaluation were not received from this 2000 seadragon for inclusion in the current study; nevertheless, inclusion of these sequences together with sequences of Exophiala isolates from other fish contributes to the distinct clade designation and host predilections that characterize Exophiala sp. nov. Nearly all species belonged to the black yeast genus Exophiala having annellidic conidiogenesis, whereas Veronaea botryosa with large sympodial conidiophores was found to be a member of this clade. Most species in the clade have originated from watery environments and have also been isolated from diseased fish and amphibians. In some species, strains from human origins were present and mostly associated with mild cutaneous infections. Efforts are presently under way to provide a formal description of Exophiala sp. nov. in a taxonomic paper, wherein this species will be introduced as a novel taxon (M. J. Harrak, G. S. de Hoog, unpublished data).

Discussion

Environmental fungi are increasingly important sources of infection to humans and animals. The emergence or resurgence of fungi as pathogens, including those previously considered environmental contaminants, have been associated with a wide range of globally relevant medical, societal, and economic factors, such as increasing populations of immuno-compromised individuals,4,22,36,52,53 international travel, changes in land use and agriculture, and even migration of clouds of desert dust in the atmosphere.25 International commerce of farmed North American bullfrogs (Rana catesbeiana) used for the restaurant trade, for example, has been implicated as a cause of chytridiomycosis in wild amphibians elsewhere around the globe.11 Ornamental fish and the aquarium industry represent a commercial source of regional and international translocation of innumerable species that can afford environmental fungi the opportunity to infect new hosts.

Exophiala spp. are ubiquitous in soil and aquatic environments and often considered environmental contaminants. Reports of Exophiala spp. infection in domestic and wild animals are few and include subcutaneous10 and systemic27 lesions in cats by E. jeanselmei and a subcutaneous mass in the right neck of a dog by E. dermatitidis.31 In nondomestic animals, E. jeanselmei was isolated from a subcutaneous lesion in a free-ranging eastern box turtle,30 and an Exophiala sp. with close similarity to E. pisciphila was isolated from systemic lesions in a Galapagos tortoise.39 Exophiala spp., including Wangiella (Exophiala) dermatitidis, E. jeanselmei, E. oligosperma, and E. spinifera, are more common causes of phaeohyphomycotic lesions in immunocompromised humans and encompass ocular,47 cutaneous, subcutaneous,68 and occasional systemic infections, wherein a history of chronic debilitating disease, altered immune status, and/or chemotherapy was reported.9,36,52,53 Exophiala salmonis, known to be a pathogen of fish,13,46,54 has been associated with subcutaneous phaeohyphomycosis in a human patient who most likely acquired the infection from a water source.38 This highlights the zoonotic potential of Exophiala spp. and the potential effect aquatic pathogens may have on human health.

Exophiala spp. have been identified as significant pathogens of cultured fish, such as cutthroat trout,13 Atlantic salmon,46 channel catfish,42 and Japanese flounder,33 resulting in localized and systemic infections with a notable variety of inflammatory
Figure 1. Skin ulcer; leafy seadragon with lateral body wall removed to expose coelomic viscera. An ulcer (arrow) is located in the skin adjacent to the cloaca. Inset: Closer view of the ulcer with raised black margins. SB = swim bladder; INT = intestine.

Figure 2. Transverse section of dorsal trunk; weedy seadragon. A, there is extensive necrosis involving approximately two-thirds of the renal parenchyma. Note the presence of fibrin and cells in the extradural sinus (asterisk) and an infiltrate along the fascia and margin of adjacent epaxial muscle (arrows). Hematoxylin and eosin. Bar = 500 μm. B, higher magnification of renal parenchyma reveals innumerable, filamentous brown fungal hyphae (arrows) coursing through necrotic tubules, interstitium, and sinusoids. Hematoxylin and eosin. Bar = 50 μm.

Figure 3. Gill; leafy seadragon. There is focally extensive necrosis of several consecutive filaments and their lamellae (bracket) overlying a region of the arch wherein a mat of densely intertwined brown fungal hyphae (asterisk) resides within the venous sinus.
responses. A dematiaceous fungus subsequently named *Exophiala salmonis* was reported to be the cause of epizootics of cerebral mycetoma in fingerling cutthroat trout.\(^\text{13}\) The lesion due to *E. salmonis* was characterized by granuloma formation with numerous giant cells in the brain and cranial tissues; it developed first in the brain, then extended peripherally to include surrounding cranial structures, such as the eye and gill. Similarly, in *Exophiala piscipilosa* infection associated with high mortality of Atlantic salmon, hyphae invaded cranial structures, including semicircular canals, and the lateral line, accompanied by a granulomatous inflammatory reaction.\(^\text{35}\) Contaminated food was suggested as a source of infection by *E. salmonis* in Atlantic salmon that developed granulomas in the posterior kidney.\(^\text{54}\) *Exophiala salmonis* infection was later described in 3 Atlantic salmon held in a partial reuse system for up to 20 months.\(^\text{46}\) Lesions in these salmon were systemic, including the kidney, and differed from earlier reports in that the host inflammatory response was predominantly granulocytic, with the formation of microabscesses. In contrast, lesions in Japanese flounder were limited to the skin.\(^\text{53}\)

In the current study, systemic necrotizing lesions and invasion of blood vessels were consistent features of *Exophiala* spp. infection in seadragons. Necrosis was the predominant pathologic change, and the host inflammatory infiltrates were mild compared with the extent of necrosis and consisted mainly of histiocytes. Granulomas and abscesses were not consistently identified in seadragons, nor was there involvement of the brain, vestibular apparatus, or lateral line. Three of 20 seadragons did, however, have fungal hyphae that invaded the spinal cord, which may have resulted from invasion of the overlying extradural sinus.

The portal of entry in these cases is presumed to be gill or skin by traumatic inoculation or secondary inoculation of preexisting lesions, such as abrasions of the tubed snout, with subsequent hematogenous dissemination to visceral organs. Another portal of entry to consider could be direct ingestion of fungi associated with detritus and live or thawed frozen food accumulating in the tank substrate in aquarium settings. In the seadragon cases, however, there were no intestinal mucosal lesions associated with fungal invasion; instead, lesions were limited to the muscle coats and serosa, suggestive of hematogenous or transcoelomic spread.

The absence of granuloma formation or significant host inflammatory reaction to *Exophiala* spp. infection in these seadragons could be the result of an inadequate or deficient host immunologic response. No studies have been conducted to determine immune function in seadragons, but it could be that stress of captivity may be a contributory factor to reduced immune function. Fish in captive, artificial systems, or intensive rearing operations may be

Figure 4. Blood vessel, kidney; weedy seadragon. Intertwined hyphae are present in the blood vessel lumen, and there is necrosis of a segment of the wall. Hematoxylin and eosin. Bar = 200 μm.

Figure 5. Fungal hyphae, kidney; weedy seadragon. Hyphae are slender, filamentous, and septate with occasional right-angle branches. Walls of hyphae stain brown, indicative of melanin. Fontana-Masson. Bar = 25 μm.

<table>
<thead>
<tr>
<th>Animal ID/Species</th>
<th>Aquarium</th>
<th>Exophiala sp. isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002 #1 LSD</td>
<td>NEAq</td>
<td>Exophiala nov.</td>
</tr>
<tr>
<td>2004 #3 LSD</td>
<td>NEAq</td>
<td>Exophiala nov.</td>
</tr>
<tr>
<td>2005 #3 WSD</td>
<td>AAq</td>
<td>Exophiala nov.</td>
</tr>
<tr>
<td>2005 #5 WSD</td>
<td>NEAq</td>
<td>Exophiala angulosa</td>
</tr>
<tr>
<td>2006 #1 WSD</td>
<td>AAq</td>
<td>Exophiala nov.</td>
</tr>
<tr>
<td>2006 #3 WSD</td>
<td>NEAq</td>
<td>Exophiala nov.</td>
</tr>
</tbody>
</table>

* Note the isolation of *Exophiala* sp. nov. from 2 different institutions (NEAq = New England Aquarium, Boston, MA; AAq = Adventure Aquarium, Camden, NJ). LSD = leafy seadragon (*Phycodurus eques*); WSD = weedy seadragon (*Phyllopteryx taeniolatus*).
Figure 7. Consensus tree of prevalently waterborne *Exophiala* species, based on internal transcribed spacer (ITS) ribosomal DNA of 68 strains, constructed with neighbor-joining algorithm under the HKY+G substitution model (according to MrAIC), with 1,000 bootstrap replicates (according to TREEFINDER; values ≥ 80 are shown with the branches) and edited with Fig Tree version 1.0. Sequences are trimmed at GGCCC to (T/C)AGGGA for comparison. *Veronaea botryosa* was selected for rooting the tree. ITS sequences from *Exophiala* sp. nov. isolates form a distinct clade separate from other *Exophiala* species and supported by very high bootstrap value (100). Symbols following taxa (*, †, ‡) indicate sequences of isolates obtained from the same individual.
immunosuppressed or otherwise compromised and therefore predisposed to infections by *Exophiala* spp. and other environmental fungi.56 Reports of infection with pigmented fungi in tropical marine fish are usually believed to be secondary to immunosuppression resulting from transport, trauma, or confinement-induced stress.60 There were no mortalities of other species of fish housed in the same tanks as these seadragons, suggesting that this infection is species specific. This hypothesis is supported by the fact that species in the clade of psychrotolerant, waterborne melanized fungi (*Chaetothyriales*) each show somewhat different host predilections (Fig. 7).

Studies on virulence factors in phaeoid fungi, such as *Wangiella* (*Exophiala*) *dermatitidis*, have identified synthesis of melanin within cell walls as the main virulence factor.20,29,44 Melanin scavenges free radicals and hypochlorite produced by phagocytic cells and/or binds hydrolytic enzymes, and it is also believed to be important in the formation of the fungal appressorium, a structure that aids in entering the host cells.20,29,63 The ability of these fungi to cause disseminated infection has been associated with the resistance afforded by melanin to oxidative damage by host phagocytic mechanisms. Melanin production in the context of host infection is not limited to phaeoid fungi, however, and melanin has been identified as a virulence factor in certain dimorphic fungi, such as *Cryptococcus neoformans*,64 *Paracoccidioides brasiliensis*,24 and *Histoplasma capsulatum*.45 fungi that are considered emerging pathogens in both domestic animals and humans. Few studies have examined the role of chitin as a virulence factor in melanized fungi. Chitin serves to provide additional strength to fungal cell walls37,63 and disruption of chitin synthases has been shown to affect growth of fungi at temperatures of infection.37 Recently, the assimilation of alkylbenzenes, which occur as environmental pollutants but also in vertebrates as neurotransmitters, has been suggested as a virulence determinant specific to *Chaetothyriales*.50

Initial diagnoses in the seadragon cases in the present study were made from gross lesions observed in live and dead animals, cytologic examination of affected tissues, and characteristics of fungi in histologic sections. In instances in which frozen or fresh tissues representing suspected lesions were available, fungal culture of the kidney, skin, liver, and/or spleen consistently yielded velvety, olivaceous, or brown-black molds, which upon further molecular testing were identified as species of *Exophiala*. The genus is morphologically characterized by the presence of annellated zones producing annelloconidia from nearly undifferentiated conidiogenous cells. However, based on rDNA ITS sequence data, it was found that *Veronaea botryosa*, with large conidiophores and 2-celled sympodial conidia, is a member of this clade. Given the fact that the entire clade shows an association with watery environments (ranging from ocean water to drinking water) at cold to mild temperatures, it was concluded that ecology is a prime factor in the phylogeny of these species. Species found in somewhat warmer environments, such as bathrooms and swimming pools, are recurrently encountered as agents of mild human disease, infecting external body parts, such as skin of the extremities, and occasionally nasal sinuses (de Hoog, personal communication, 2008).

Such bacteria as *Vibrio* spp., *Pseudomonas* spp., and *Mycobacterium* spp. are commonly found in sea water and likely represent opportunistic invaders or potential members of normal skin flora.7,43 Although a variety of Gram-negative bacteria were isolated from skin lesions, no species of bacteria was consistently isolated. Cutaneous lesions in the seadragons were often advanced when examined histologically so that a determination as to whether the inciting lesion was bacterial, fungal, or traumatic was not possible. In contrast, visceral lesions and vascular invasion were fungal in nature, and bacteria were not identified.

To the authors’ knowledge, this is the first report describing disseminated phaeohyphomycosis with isolation of *Exophiala* spp. in seadragons. Seadragon habitats, such as algal covered reefs and seagrass meadows, are being adversely affected by human activities, and loss in quality and quantity of habitat has been documented (http://www.dragonsearch.asn.au; www.iucn.org).14,15,58 Seadragons are difficult to culture and are susceptible to stress of confinement, poor diet, and trauma. Disseminated *Exophiala* spp. infection, as described in these cases, poses challenges to the management and conservation efforts of these fish.

Acknowledgements

The authors thank Deana Edmunds, Vickie Weidig, and Sharon Gagnon for necropsy support; Ione Jackman and Denise Woodward for histotechnological support; and the animal health and husbandry staff at the aquariums who provided care to these fish. The authors also thank Elizabeth Thompson of the Fungus Testing Laboratory for her work on the morphologic identification of these isolates and acknowledge Drs. Terri Wheeler (IDEXX Laboratories, North Grafton, MA) and Amy Groeters (Louisiana State University, Baton Rouge, LA) for their contributions to the early isolations and characterizations. B. L. Wickes is supported by grant PR054228 from the U.S. Army Medical Research and Material Command, Office of Congressionally Directed Medical Research Programs.
Sources and manufacturers

a. Finquel/MS-222, Argent Chemical Laboratories Inc., Redmond, WA.
c. Janssen Pharmaceutica, Beerse, Belgium.
e. National Fish Pharmaceuticals, Tucson, AZ.
f. Virkon®, Antec International Ltd., Sudbury, Suffolk, UK.
g. GlaxoSmithKline, Brentford, Middlesex, UK.
h. Sigma-Aldrich, St. Louis, MO.
i. Northeast Laboratory Services, Waterville, ME.
j. Hardy Diagnostics, Santa Maria, CA.
k. Applied Biosystems, Foster City, CA.
l. Invitrogen Corp., Carlsbad, CA.
m. PTC-100, MJ Research, Inc., Waltham, MA.

References

Sequence-based identification of *Aspergillus*, *Fusarium* and *Mucorales* in the clinical mycology laboratory: Where are we and where should we go from here?

Balajee SA¹, Borman AM², Brandt ME¹, Cano J³, Cuenca-Estrella M⁴, Dannaoui E⁵, Guarro J³, Haase G⁶, Kibbler CC⁷, Meyer W⁸, O’Donnell K⁹, Petti CA¹⁰, Rodriguez-Tudela JL⁴, Sutton D¹¹, Velegraki A¹², Wickes BL¹³.

¹Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, US, ²Mycology Reference Laboratory, Health Protection Agency, Bristol, United Kingdom, ³Unitat de Microbiologia, Facultat de Medicina, Universitat Rovira i Virgili, Reus, Spain, ⁴Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Spain, ⁵Centre National de Référence Mycologie et Antifongiques, Unité de Mycologie Moléculaire, CNRS URA3012, Institut Pasteur, Paris, France, ⁶Institute of Microbiology, University Hospital, RWTH Aachen, 52074 Aachen, Germany, ⁷Centre for Medical Microbiology, University College London, UK, ⁸Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, University of Sydney, Western Clinical School at Westmead Hospital, Westmead Millennium Institute, Westmead, NSW 2145, Australia, ⁹Microbial Genomics and Bioprocessing Research Unit, NCAUR-ARS-USDA, Peoria, IL, ¹⁰Departments of Medicine and Pathology, University of Utah School of Medicine, Salt Lake City, UT, ¹¹Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, ¹²Mycology Laboratory, Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Greece, ¹³Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
The identification of fungal species and determination of their significance in the clinical laboratory are complex practices that help establish or exclude a fungal cause of disease. In the past, the clinical mycologist utilized a limited array of phenotypic measurements for categorizing isolates to the species level. This scenario is shifting in favour of molecular identification strategies largely due to a combination of several factors including: (i) the changing landscape of epidemiology of medically important fungi: novel organisms never before implicated in human infection are being reported from clinical samples (10, 41), (ii) reports of species-specific differences in antifungal susceptibilities of these newly recognized fungi (4, 10, 41), (iii) numerous studies demonstrating that morphology alone may not be a sufficiently objective method for species determination (7, 8, 10, 23, 41); and (iv) a growing scarcity of bench scientists and microbiologists trained in traditional mycology. With the increasing incidence of fungal infections and reports of invasive fungal infections in non-traditional populations, such as patients with critical illnesses, the onus is on the clinical microbiologist/mycologist to return a timely and accurate identification. Molecular methods are rapid with a turn around time of about 24 hours from the time of DNA extraction, yield results that are objective with data portable between labs and could be more economical in the long run.

Few topics are more controversial or evoke such a passionate response as the term “species” to a mycologist. Multiple molecular studies have demonstrated that a strategy where multiple genes (or portions there of) are sequenced and the resultant data are analyzed by phylogenetic methods is a robust strategy for fungal species recognition. This concept known as phylogenetic species recognition (PSR) (40) has been used successfully to define species in *Fusarium* and *Aspergillus* (8, 23, 29, 31,
32). The advent of PSR has greatly clarified the taxonomy of these genera and as such is a powerful tool for fungal species delimitation. However, this methodology is expensive and requires phylogenetic expertise which may be limiting factors in clinical microbiology laboratories. In reality, once a species has been delimited by PSR using several robust loci, sequence diversity within the species is known and on the basis of this knowledge, comparative sequence analyses from a single locus can be used for rapid species identification. "Cut-off scores", which are dependent on genetic diversity within and between sibling species, can be then provided.

Thus, it is important to clarify that our intent in this editorial is to address the practice of species “identification” as applied to a clinical setting and not species “classification” necessary for taxonomic categorization. Although both terms can be overlapping, the purpose of an “identification” method in a clinical microbiology laboratory is the ability to provide a specific name or epithet to an organism rapidly and with precision, without the complex experimental research or detailed phylogenetic analyses vital for a taxonomic “classification” scheme. Such specific information can then be used by the physician in a decision making algorithm that can guide patient management.

The field of medical mycology has embraced molecular methods of identification, resulting in the exploration of numerous potential targets, an explosion in the number of sequences from these loci, and recognition of previously unknown fungal species adding to the already staggering fungal diversity. On the other hand, this practice may have opened up a number of possibilities, at least from the perspective of a
mycologist in a routine microbiology laboratory, resulting in considerable uncertainty about the best possible molecular method to obtain a species identification. Realizing this, a consortium of international experts was assembled as an International Society for Human and Animal Mycology (www.isham.org) working group on fungal molecular identification. With the goal to support clinical laboratories in their efforts to identify fungal species from culture using molecular methods, the ISHAM working group agreed to begin by focusing on molecular strategies available for medically important fungi of the genera *Aspergillus*, *Fusarium* and the order *Mucorales* (Zygomycota). The advantages and limitations of these methods are discussed and the recommendations of this working group are presented in this editorial.

Comparative sequence identification strategy

Today, comparative sequence-based identification strategies can be considered the new "gold standard" for fungal species identification (39). This method is based on PCR amplification of a selected region of genomic DNA (target locus), followed by sequencing of the resulting amplicon(s). Once a consensus sequence is obtained, it can be queried against a database library and evaluation for species identification can be performed by generating dendrograms, examining percent similarity/percent dissimilarity, or executing more sophisticated phylogenetic analyses. The current approach in clinical laboratory practice is to interpret sequence comparison results by generating a percent identity score, which is a single numeric score determined for each pair of aligned sequences and measures the number of identical nucleotide matches in relation to the length of the alignment. Cut-off scores for species identification are arbitrary and the scores can vary depending on numerous factors.
including the quality of the sequence, the number and accuracy of existing database
records from the same species and locus, the length of the sequence fragment, and the
software program employed. At present, there is no definitive study describing an
absolute cut-off for same-species identity across the fungal kingdom and no
consensus definition exists on how to define a species using such comparative
sequence methodologies.

The success of a comparative sequencing strategy for the identification of a wide
range of clinical fungi lies mainly in the choice of the appropriate locus. The gene
target should be orthologous (i.e., evolved by common descent), having a high level of
inter-species variation combined with low levels of intra-specific variation, and
ideally should not undergo recombination. In addition, the target must be easy to
amplify and sequence using standardized “universal” primer sets. Finally, the
amplified DNA fragment should be within the size range obtainable with the most
commonly used automated DNA sequencers (~600-800 bp) and easily aligned with a
sequence database for comparison. Does such a utopian locus exist?

Multiple studies have demonstrated that comparative sequence-based identification
using the nuclear ribosomal internal transcribed spacer region (ITS1, 5.8S rRNA and
ITS2) located between the nuclear small and large subunit rRNA genes (43) could be
employed for species complex level identification of Aspergillus (21) and most
Mucorales (37) and for identification within some species complexes of Fusarium
(Figure 1; 31, 44). The ITS region satisfies most of the aforementioned requirements
of a “universal” marker since this region can be reliably amplified for most fungi, is
conserved, present as multiple copies in the fungal genome, yields sufficient
taxonomic resolution for most fungi, and has the additional advantage that GenBank/
European Molecular Biology Laboratory Nucleotide Sequence Database/ DNA Data
http://www.ddbj.nig.ac.jp/) contains a large number of sequences from this locus,
enabling a ready comparison of the sequence from an unknown isolate.

There is considerable consensus regarding the use of ITS sequencing as the initial step
in mold identification. An international Aspergillus working group recently
recommended the use of the ITS region for subgenus/section level identification for
the genus Aspergillus (9). Also, the International Subcommission on Fungal
Barcoding has proposed the ITS region as the prime fungal barcode or the default

Significant disadvantages of the ITS region include: (i) insufficient hypervariability to
distinguish the various species in the Aspergillus sections and Fusarium species
complexes; (ii) its failure to distinguish between closely related species (sibling
species) because of insufficient nucleotides differences, for example A. lentulus from
A. fumigatus; and (iii) problems with the reliability of the ITS sequences deposited in
the reference databases (e.g. GenBank/EMBL/DDBJ) (26).

Comparative sequence based identification strategies can be meaningful only with the
availability of well-curated, robust and reliable databases that are populated with
sequence data from type or reference strains (where possible), have been rigorously
validated in terms of their nomenclature, and include sequences from a wide variety
of target species. The most widely used database is GenBank which contains a huge
number of sequences, but these are combined with unedited and non-validated

6
information, which may only be updated and corrected by the original submitter.

Errors in fungal sequences within GenBank have been found to be as high as 20% (26). Despite calls for the process to be changed, to allow for third-party revision (11), there seems little prospect of this in the near future (34). On the other hand, smaller databases, such as those provided with commercial sequence-based identification systems, are often inadequate because of their lack of breadth (omitting many, often important species) and depth (containing few representatives of the same species) (19). To overcome these problems, specific sequence databases for particular groups of fungi, based on quality-controlled sequences have been created mainly for plant pathogenic, industrially important and ectomycorrhizal asco- and basidiomycetes fungi (e.g.: *Fusarium* spp. (FUSARIUM-ID v. 1.0 (17);

Ideally the mycology community needs to find a way of combining high quality sequence and available species data present in numerous reference and research laboratories around the world.

Species identification in Aspergillus, Fusarium and the Mucorales

Aspergillus species
Taxonomically, the genus *Aspergillus* is divided into seven sub-genera, which are further divided into several “sections” - for example sub-genus *Fumigati* encompasses 2 sections: *Fumigati* and *Cervini* (24). Clinically relevant aspergilli are represented within several sections of the seven sub-genera. For instance, the medically important species *A. fumigatus*, and other relatives less commonly implicated in human infections such as *Neosartorya fischeri* and *A. lentulus*, fall within section *Fumigati* of the genus *Aspergillus*. Given that this classification scheme is unique to the genus *Aspergillus*, it is important to recognize that there can be two levels of identification: (i) identification to a given species complex, e.g., discrimination of *A. fumigatus* complex (subgenus *Fumigati*, section *Fumigati*) from *A. flavus* complex (subgenus *Circumdati*, section *Flavi*); and (ii) identification of species within a section, e.g., discrimination of *A. fumigatus* from *A. lentulus* (both members of the section *Fumigati*, subgenus *Fumigati*). Employing comparative sequence analysis of the ITS region, one can rapidly and unquestionably place an *Aspergillus* isolate within the respective sections, for instance *A. ustus* (Section *Usti*) or *A. terreus* (Section *Terrei*) (21). In contrast, species identification within a given *Aspergillus* section, for instance identification of the various species within section *Usti* (i.e *A. calidoustus*, *A. ustus*, *A. pseudodeflectus*) can be challenging given that the ITS region has few sites that are variable enough for this degree of resolution. In addition, several aspergilli have overlapping morphological features rendering phenotypic identification methods inadequate. Numerous studies have demonstrated that comparative sequence analyses of protein coding regions such as β-tubulin, calmodulin and rodlet A can identify species within sections *Fumigati*, *Usti*, *Nigri* and *Terrei* (4, 7, 8, 23, 36, 41).
Recognizing the growing role of molecular methods in *Aspergillus* species identification, an international *Aspergillus* working group (9) proposed the following recommendations: (i) the term “species complex” as an alternate to “section” (ii) use of sequences from the ITS region for identification of *Aspergillus* isolates to the species complex level; (iii) comparative sequence analyses of the β-tubulin region for species identification within a complex. This recommendation can be advantageous to clinical laboratories that rely on comparative sequence analyses of the ITS region (which are not variable enough for species identification within a section) and/or morphology for species identification (where overlapping morphologies can hinder resolution of species within the sections) as they can report the identification of an unknown organism to species complex, for instance *A. terreus* complex. Thus the term “complex” in such an identification scheme would indicate the placement of the isolate within a species complex, but does not identify the isolate to a species within the complex.

Fusarium species

Fusarium species have emerged over the past three decades as an important genus of filamentous molds causing opportunistic infections in humans (27). Detailed molecular studies employing sequences of multiple loci such as elongation factor (EF-1 α) (17), β-tubulin (β-TUB), calmodulin (CAM), RNA polymerase II second largest subunit (RPB2; Figure 1) and subsequent phylogenetic analyses of medically important fusaria have revealed the presence of multiple cryptic species within each morphologically recognized “morphospecies”. For instance, ‘*Fusarium solani*’ actually represents a complex (i.e., *F. solani* species complex, FSSC; Figure 1) of over 45 phylogenetically distinct species of which at least twenty are associated
with human infections (31, 44). Similarly, members of the *Fusarium oxysporum* species complex (FOSC) are phylogenetically diverse (31, 44), as are members of the *F. incarnatum-equiseti* (FIESC) and *F. chlamydosporum* species complexes (FCSC; Figure 1, 30) and O’Donnell, unpublished data). Cases involving the latter two complexes are typically reported, as the polytypic morphospecies *F. incarnatum/F. semitectum/F. equiseti* and *F. chlamydosporum* respectively (38). Available data clearly demonstrate that sequences from the nuclear ribosomal internal transcribed spacer region (ITS) and domains D1 and D2 of the 28S rDNA large subunit (LSU) are too conserved to resolve most clinically important fusaria at the species level (31, 44), despite reports to the contrary (16, 20). Moreover, use of the ITS rDNA within the *Gibberella fujikuroi* species complex (GFSC) and FOSC (29), and β-tubulin within the FIESC and FSSC should be avoided due to paralogous or duplicated divergent alleles (32 and O’Donnell, unpublished data).

Mucorales

Evolutionary relationships of species within the order *Mucorales* (of the Division *Zygomycota*) have been investigated by phylogenetic analyses of nuclear ribosomal 18S and 28S rDNA and translation elongation factor (*EF-1α*) gene sequences and have revealed that species within medically important genera such as *Absidia* and *Mucor* appear to be polyphyletic (i.e., from multiple evolutionary origins) (33, 42). Indeed, a recent taxonomic revision of *Absidia* based on physiological, phylogenetic, and morphological characters has been proposed (22), with re-classification of the human pathogen *Absidia corymbifera* as *Mycocladus corymbiferus* in a new family. Similarly, molecular and physiological data were used to distinguish two species
within the morphospecies *Rhizopus oryzae* (1, 2, 35), with the proposal that the fumaric-malic acid producing species be named *R. delemar* (2).

Several recent studies have demonstrated the utility of comparative sequence analyses of the nuclear ribosomal 28S rDNA D1/D2 domains, the ITS region, actin and partial translation elongation factor (*EF-1α*) gene sequences for resolving at or near the species level within the *Mucorales* (1, 2, 33, 37, 42). Analyses of intra- and interspecies variability of ITS sequences from 54 isolates of *Mucorales* belonging to 16 different species was evaluated recently, and the results support ITS sequencing as a reliable method for the accurate identification of most medically important *Mucorales* to the species level (37). However, it is important to note that some closely related species could not be resolved using ITS sequence data. Similarly, while ITS sequence data can be used for the identification of several *Rhizopus* species (1, 25), they lack sufficient variability to resolve *R. azygosporus* from *R. microsporus*. In addition the D1/D2 domains of the 28S rDNA and the high-affinity iron permease 1 gene (*FTR1*) appear to be useful targets for species identification, although the *FTR1* locus could not resolve all of the clinically relevant species within *Rhizomucor* and *Mucor* (28). Thus, it is readily apparent that sequencing of more phylogenetically informative gene targets will be required for certain *Mucorales*, and that phylogenetic analyses of several loci will be needed to fully assess species limits within the *Mucorales*.

Relevance of species identification in the clinical microbiology laboratory

An important issue to be considered when deciding the choice of loci and/or number of loci is the relevance of identifying every unknown isolate to the smallest taxonomic unit. In other words: Should a clinical microbiology laboratory strive to identify
every isolate to the species level or is it sufficient to identify isolates to the genus or species complex level. Species level identification of a fungal isolate recovered from a clinical specimen (especially from a sterile site from an immunocompromised patient) could be important given that species identification of appropriate isolates in high risk populations may reveal the etiological agent of disease, aid selection and monitoring of antifungal therapy, and support epidemiological investigations leading to effective infection control measures. On the other hand, many sporadic isolates do not represent clinically important disease and it may be wasteful to devote resources to identifying such isolates without an understanding of their role in disease.

After identifying the unknown fungal isolate to a species complex, should the laboratory go further to achieve species identification within a section or complex? This is difficult to answer – nevertheless each one of us in the clinical microbiology laboratory faces this question every time we recover a fungus from a high risk patient and/or read a manuscript describing yet another species within the complexes. The clinical significance of identifying isolates to species, for example *A. terreus* vs. *A. fumigatus* in the genus *Aspergillus*, is evident given the different susceptibilities to the antifungal drug amphotericin B; however the significance of identifying individual species within the complexes of aspergilli and fusaria, and to the species level within the *Mucorales* is not fully apparent at this time. Studies have shown species-specific differences in antifungal susceptibilities within *Aspergillus* section *Fumigati* (4) while other studies have shown little or no difference in antifungal susceptibilities of species within the sections *Usti* (41) and *Terrei* [Balajee et al, unpublished data]. Likewise, there appears to be limited species-specific differences in antifungal susceptibilities within the genus *Fusarium* (3, 6, 31). On the other hand, considerable interspecific
variation in antifungal susceptibility of the *Mucorales* to polyenes and azoles has been observed *in vitro* (14, 15) and *in vivo* animal models of zygomycosis (18), suggesting that species identification might be clinically relevant in the future as more active antifungal agents against these organisms become available and as *in vitro* break-points are defined.

Taken together, data regarding differences in pathogenicity and *in vivo* drug susceptibilities of the various species within *Aspergillus* and *Fusarium* complex do not categorically suggest that identification within these taxa will impact clinical and therapeutic decision making, at least at the current time. However, identification to species/strain level could inform the epidemiology of fungal infections and can be critical in outbreak investigations (12, 30). Accordingly, the decision to identify an unknown isolate to species level within a given section/complex of these genera will be based on the need of the clients that the microbiology laboratory is serving (high risk versus low risk populations), site of isolation of the fungus (sterile versus non-sterile sites), funds and personnel available.

CLSI recommendations for fungal species identification.

At present, DNA target sequencing can provide a quantitative metric to classify fungi; however sequencing results can create laboratory uncertainty when assigning microorganisms to their appropriate taxonomical groups. Realizing this, in May 2008, the Clinical and Laboratory Standards Institute (Formerly NCCLS) published a document, “Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing” to address the challenges of sequence analyses in general clinical laboratory practice (13). Specifically, the CLSI guideline provides a systematic and
uniform approach to identify fungi by broad-range DNA target sequencing in the clinical laboratory. The document establishes guidelines for primer design, quality control parameters for amplification and sequencing, measurement of sequence quality, and assessment of reference databases. Since consensus has not yet been achieved in multilocus DNA sequencing, and since most clinical laboratories do not have the resources to perform such analyses, the guideline focuses on the most commonly used target, the ITS region. For specific taxonomic groups, tables are provided to describe the relative strengths and limitations of individual DNA targets and list alternative DNA targets for those laboratories pursuing further phylogenetic resolution. Finally, the document discusses reporting strategies that are clinically relevant for specific groups of microorganisms. Since our current understanding of the diversity of clinically important phylogenetic species within *Aspergillus* and *Fusarium* is in flux and the biological importance of drawing finer phylogenetic distinctions remains to be determined, the guideline recommends that for certain taxa, clinical laboratories report sequence results for isolates only to the level of genus or species complex.

The CLSI document is largely centered around the ITS region as a target because of the general applicability, research backing, and literature validation of this target. Similar to CLSI, the WG details differences between species complexes and individual species, and presents alternative targets that might offer the user more specific species identification in *Aspergillus* and *Fusarium* if such information is needed.

Recommendations of the Working group
If the goal is to identify an unknown organism with no a priori knowledge, then the ITS region is a reasonable and extensively used choice for species complex identification within the genera *Aspergillus*, *Fusarium* and to most species within the Mucorales.

Such a consensus on the employment of the ITS region as the default locus for use in the clinical laboratory setting would achieve international consistency in the way that other collaborative initiatives, such as the EORTC/MSG diagnostic criteria for invasive fungal infection (5), have been successful. This consensus should have the effect of enhancing the publication of ITS sequences and focusing commercial efforts on this strategy. Clinical laboratories that have been reluctant to adopt molecular technology in an atmosphere of conflicting opinions and evidence are more likely to implement methodology that has international backing. In addition, the quality of clinical and other research publications would be improved and harmonized based on the use of a universal locus.

This working group acknowledges the known shortcomings of the ITS locus and therefore recommends a staged sequence-based identification strategy (Figure 2) for identification of aspergilli, fusaria and the *Mucorales* in a clinical microbiology laboratory. Based on this proposed algorithm, when an unknown fungal isolate is received in a clinical microbiology laboratory, after initial morphological examination the laboratory can pursue morphological or molecular identification methods or choose a combination of both methods (Figure 2). When further resolution is required, comparative sequence analyses of one or several protein coding regions can
be performed for species level identification within *Aspergillus* and *Fusarium*
complex.

There is no universal agreement on the identity cut-off values that should be applied for same species identity and thus a certain degree of interpretation will be required, at least until the issues already discussed have been resolved. At this time, the CLSI guidelines do not provide cut-off values because, at the time of writing, the available data did not support such cut-off values for fungi. Nevertheless, it will be important for the mycological community to refine guidelines in this difficult area for users in the clinical setting, to ensure consistency of interpretation. Thus far, analysing ITS sequence data from >600 *Aspergillus* isolates from three different laboratories (Balajee SA, Meyer W, Velegraki A; unpublished data) and employing both “in house” sequence databases and the GenBank/EMBL/DDBJ database for sequence comparison, a percent identity of 94 - 100% to the respective type/validated strain is proposed for species complex level identification within the genus *Aspergillus*. For the genus *Fusarium* (Figure 1) and within most species within the *Mucorales*, we propose that if the ITS sequence of an unknown fungal isolate yields a percent identity of ≥ 99% to a type/reference strain, the isolate can be placed within one of six clinically relevant species complexes. When ITS comparative sequence analyses yield ambiguous data, the clinical laboratory may consider sending the isolate to a reference laboratory for identification.

When performing comparative sequence analyses (as outlined in Figure 2) it is imperative to understand that the percent identity scores generated using GenBank/EMBL/DDBJ are influenced by numerous factors including the quality of
the sequence, the number and accuracy of existing GenBank/EMBL/DDBJ records for the same species and locus, and the completeness of the sequence (double-stranded sequence). Importantly, because outputs can be ranked by maximum score, total score, or percent identity, and searches can be customized for parameter preferences (i.e., gap penalties and BLAST algorithm), users should take advantage of some of the tutorials and background information prior to performing searches.

In order to improve the accuracy of sequence data, the working group further emphasizes the importance of completing database record fields (especially those of GenBank®/EMBL/DDBJ) correctly when submitting sequences for inclusion in these databases. The teleomorph name should be included if known and available for the organism and species names should follow guidelines established by the International Code of Botanical Nomenclature. Species identity and sequence accuracy can be confirmed with reference to other sources such as the Centraalbureau voor Schimmelcultures (http://www.cbs.knaw.nl), the UK National Collection of Pathogenic Fungi (http://www.hpacultures.org.uk) and Mycobank (http://www.mycobank.org). It must be remembered however that isolates in these collections were mostly identified by morphology alone.

Comparative sequence based identification is an evolving area of research with the constant addition of new sequences at novel and traditional loci to many different databases. Future studies will be needed to assess the validity of the proposal made in this editorial and to examine its utility in the clinical setting. As noted, the CLSI document is intended to be updated periodically, so that additional research based evidence can be translated into better defined algorithms and guidelines of practical
benefit. It is an important beginning and, together with the efforts of the working
group, it should help guide and inform development of this clinical mycology
laboratory methodology.
Acknowledgements

B.L.W is supported by grant# PR054228, from the U.S. Army Medical Research and Materiel Command, Office of Congressionally Directed Medical Research Programs.

Disclaimer

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the CDC.
References

70:2387-2393.

2. Abe, A., Y. Oda, K. Asano, and T. Sone. 2007. Rhizopus delemar is the
proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia.

3. Alastruey-Izquierdo, A., M. Cuenca-Estrella, A. Monzon, E. Mellado, and
Fusarium spp. isolates identified by molecular methods. J. Antimicrob.
Chemother. 61:805-809.

4. Alcazar-Fuoli, L., E. Mellado, A. Alastruey-Izquierdo, M. Cuenca-
antifungal susceptibility patterns and sequence-based identification.

5. Ascioglu, S., J. H. Rex, B. de Pauw, J. E. Bennett, J. Bille, F. Crokaert, D.
Lortholary, J. Maertens, J. F. Meis, T. F. Patterson, J. Ritter, D. Selleslag,
P. M. Shah, D. A. Stevens, and T. J. Walsh. 2002. Defining opportunistic
invasive fungal infections in immunocompromised patients with cancer and
Dis. 34:7-14.

6. Azor, M., J. Gene, J. Cano, D. A. Sutton, A. W. Fothergill, M. G. Rinaldi,
and J. Guarro. 2008. In vitro antifungal susceptibility and molecular
characterization of clinical isolates of Fusarium verticillioides (F.

Figure Legend

Figure 1. RNA polymerase II second largest subunit (RPB2) phylogeny of *Fusarium* (modified from Figure 1 in ref 30), showing the utility of DNA sequence data from various loci for resolving at or near the species level within six medically important species complexes. GFSC, *Gibberella fujikuroi* species complex; FOSC, *Fusarium oxysporum* species complex; FIESC, *Fusarium incarnatum-equiseti* species complex; FCSC, *Fusarium chlamydosporum* species complex; FSSC, *Fusarium solani* species complex; FDSC, *Fusarium dimerum* species complex. Loci include: EF-1α, translation elongation factor; β-TUB, beta-tubulin; CAM, calmodulin. Numbers above the internodes represent the frequency (%) with which they were recovered from 1,000 bootstrap replicates of the data. A sequence of *Lecanicillium lecanii* was used to root the phylogeny.

Figure 2. An algorithm for identification of an unknown filamentous fungal species in a clinical microbiology laboratory.
*Many factors affect percent identity scores including quality and length of query sequence, the number and accuracy of existing GenBank records for same species and locus.

1 Identification to species within the *Aspergillus* and *Fusarium* complex can be achieved by comparative sequence analyses of protein coding regions.
Interlaboratory reproducibility of a single locus sequence-based method for strain typing of Aspergillus fumigatus

S.F. Hurst¹, S.E. Kidd², C.O. Morrissey², E. Snelders³, W.J.G. Melchers³, M.V. Castelli⁴, E. Mellado⁵, K. Simmon⁵, C. A. Petti⁵, S. Richardson⁵, S. Zhang⁶, A.M. Romanelli⁷, B.L. Wickes⁷, H.A. de Valk⁸, C.H.W. Klaassen⁹, S. Arunmozhi Balajee¹⁰

¹Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA; ²Department of Medicine, Monash University, Central and Eastern Clinical School, Alfred Hospital, Melbourne, VIC, Australia; ³Department of Medical Microbiology, Radboud University Nijmegen Medical Center, The Netherlands; ⁴MadSpain Servicio de Micologia, Centro Nacional de Microbiología Instituto de Salud Carlos II; ⁵ARUP Laboratories Salt Lake City, UT USA; ⁶Ontario Ministry of Health, Public Health Laboratories Branch Toronto, Canada; ⁷The University of Texas Health Science Center at San Antonio, San Antonio, TX USA; ⁸Canisius Wilhelmina Hospital Nijmegen, The Netherlands.

Abstract word count: 70
Text word count: 1522

* Corresponding author:

S. Arunmozhi Balajee,
Mycotic Diseases Branch,
Centers for Disease Control and Prevention
Mail stop - G 11
1600 Clifton Road, Atlanta, GA - 30333
fir3@cdc.gov
Phone: 404 639 3337; Fax: 404 639-3546
Abstract

Seven international laboratories tested the recently proposed single locus typing strategy for *A. fumigatus* sub-typing for interlaboratory reproducibility. Comparative sequence analyses of portions of the locus AFUA_3G08990, a putative cell surface protein (denoted as CSP), was performed with a panel of *Aspergillus* isolates. Each laboratory followed very different protocols for extracting DNA, PCR, and sequencing. Results revealed that the CSP typing method was a reproducible and portable strain typing method.
Strain typing of *Aspergillus fumigatus* can be important for detecting outbreaks and in epidemiological investigations. Recently, a novel, simple and rapid single locus sequence typing strategy has been proposed as a typing tool for *A. fumigatus* (2). Genetic diversity in this locus arises from both tandem repeats and point mutations of the gene encoding the putative Cell Surface Protein (CSP), AFUA_3G08990 (2). Balajee et al employed this method (denoted as CSP typing) to sub-type 55 epidemiologically linked *A. fumigatus* isolates obtained from six nosocomial outbreaks of invasive aspergillosis (IA) and found the technique satisfied the tenets of a good sub-typing method as it identified distinct genotypes as well as clusters of closely related isolates (clonal complex). Although a subsequent study found that CSP typing had a lower discriminatory power when compared to a microsatellite based method, CSP typing remains useful as a quick frontline strategy for *A. fumigatus* strain discrimination (1).

Importantly, since CSP typing employs a comparative sequencing strategy, it does not require elaborate training or software for analyses, is relatively user-friendly, economical and therefore amenable for use in reference microbiology laboratories. Other available sub-typing methods such as microsatellite (e.g. StrAf) based assays (3), *Afu*1 DNA hybridization profiles (*Afu*1 method) (4) have superior discriminatory power but need specialized equipment and dedicated software. And, since reproducibility studies have not been conducted using these techniques, the data obtained cannot be readily shared between laboratories.

Balajee et al evaluated the CSP typing method for typeability, in vitro stability, intralaboratory reproducibility, and concordance with other typing methods (2). However,
the interlaboratory reproducibility of this method has not been tested so far. Given that one of the hallmarks of a good typing method is reproducibility which is independent of the operator, place and time (5), we examined the reproducibility of CSP typing in diverse laboratory settings with data generated under a wide array of experimental conditions.

To test interlaboratory comparability, a panel of *A. fumigatus* isolates were selected from outbreak isolates whose CSP genotypes were established in a previous study (1, 2). In brief, *A. fumigatus* isolates used in this study were obtained from previous cases of in invasive aspergillosis outbreaks and represented both clonal and distinct genotypes (as verified by CSP typing, *Afut1* and STRAP methods (1, 2)). Species identification of all *A. fumigatus* isolates was confirmed by sequence comparison of the β tubulin region [Balajee, 2007 #372].

The panel consisted of fourteen *A. fumigatus* isolates: five isolates shared the same CSP type (arbitrarily designated genotype 1), eight isolates shared another CSP type (genotype 2), while one isolate had a unique CSP type (genotype 3). In addition, one isolate of *A. flavus* (CDC 14) was included as an outlier. Isolates were randomly coded, sub-cultured on Sabouraud dextrose agar slants, and then sent to seven international laboratories which represented research, clinical, and reference facilities. Each laboratory was also provided with the following *A. fumigatus* specific primers:

5′-TTGGGTGGCCATTGTGCCAA (forward), 5′-GGGAACAGTGCTGTGGTGA (reverse). These primers amplify a ~550 to ~700 bp fragment of the AFUA_3G08990
gene (dependent on the number of repeats). The participating laboratories cultured, isolated DNA, and performed PCR, sequencing, and DNA sequence analysis using their own routine methods.

The participating laboratories were requested to (i) generate CSP sequences from the panel of isolates and align the sequences using the Af293 (A. fumigatus isolate whose genome has been completely sequenced) CSP sequence as a reference (GenBank accession XM_749624), (ii) visually identify unique and shared genotypes, (iii) assign arbitrary designations to each distinct CSP genotype represented by one or more isolates in the panel – for example if isolates 1, 2, and 3 were observed to have related genotypes, they were assigned to genotype X, (iv) submit the arbitrary genotype assignments and all sequences in FASTA format via email to the coordinating laboratory, and (v) send detailed protocols on the methods used to generate the sequences to the coordinating laboratory. Each participating laboratory cultured, isolated DNA, performed PCR, sequencing, and DNA sequence analysis using methods which were routine in their individual laboratories.

Culture methods included seven different media (both broth and agar based) and two incubation temperatures (30°C and 37°C). For DNA extraction, two laboratories harvested mycelial mats and five harvested mycelia and spores from plates. One laboratory only collected spores for DNA isolation. DNA isolation utilized a variety of methods including commercially available kits as well as in-house protocols. Only one laboratory quantitated the isolated genomic DNA and made working dilutions of equal
concentration (10 ng/μl), while the others used the genomic DNA directly in the PCR reaction, regardless of concentration.

PCR cycling was performed on four models of thermal cyclers from three manufacturers. PCR amplifications were accomplished with either commercially available kits (one laboratory), or in-house PCR mixes (six laboratories), utilizing four different polymerases. All laboratories visualized the PCR products on an agarose gel, either commercial or made in-house. PCR product clean-up was performed either by the ExoSap enzyme reaction (one laboratory), magnetic beads (one laboratory) or by column purification (five laboratories). Five laboratories estimated the concentration of purified PCR products by comparison to a commercial mass ladder standard on an agarose gel, while two laboratories utilized the NanoDrop UV reader (Thermo Scientific) to quantitate the PCR products. One laboratory used the PCR products regardless of the concentration.

Sequencing was performed using either Applied Biosystems BD 3.1 or BD 1.1 Dye Terminator chemistry or DYEnamic ET Dye terminator chemistry (GE Healthcare) on three different models of capillary electrophoretic sequencers. One laboratory utilized a commercial sequencing service. All laboratories sequenced both the forward and reverse strands and sequence editing was performed using Sequence Analyzer, Contig Express, MacVector, Sequencher, or BioEdit software packages. Sequence alignments were assembled using the BioEdit 7.0.9, ClustalX 1.83, Lasergene 8.0 or Mega 4.0 software.

Despite the wide spectrum of reagents, equipment and methods used to obtain the CSP sequences, five laboratories assigned the correct genotype to all isolates, thus yielding
100% concordance (Table 1), while laboratory 5 and 6 reported a concordance of only
93% and 85% respectively. Laboratory 5 reported the sequence from isolate CDC 3 as
genotype 1, when the correct designation for this isolate was genotype 2. Similarly,
laboratory 6 identified the isolate CDC6 as genotype 2, when the correct designation
should have been genotype 3. The sequences obtained by these laboratories were of
high quality and identical to those of the genotypes that were incorrectly assigned. All
other sequences generated by these laboratories were also of high quality with no base-
call errors. Therefore, we speculate that laboratories 5 and 6 may have reported incorrect
genotype designations because of possible cross-contamination with another isolate from
the Aspergillus panel. Alternatively, this could also be attributed to an inadvertent
exchange of samples that may have occurred at any stage of the process from culturing of
the organism, DNA extraction, to PCR or sequencing. Six laboratories reported that
isolate CDC14 yielded no PCR product; this was expected since this isolate was A.
flavus, and should not be amplifiable with the primer set provided. Laboratory 6 reported
this isolate’s genotype as belonging to genotype 1, reiterating the likelihood of
contamination problems in this laboratory.

The participating laboratories aligned the sequences and assigned genotype scores by
visual inspection as described previously (2). The number of isolates in the panel was
relatively small, and the differences in repeat number are easy to see in aligned
sequences. However, this type of visual analysis would be difficult in larger studies and a
more robust, objective genotype scoring system which would remove any potential for
human error in genotype assignment should be developed for such analyses.
Interestingly, the limiting factor of this typing strategy was strain contamination and/or human error involving sample exchange, rather than sequencing errors or subjective data interpretation. *Aspergillus* spores are easily aerosolized and extreme care must be taken when working with these organisms to prevent contamination. Assuming that appropriate precautions are taken to prevent contamination, we demonstrate here that CSP typing performed in different laboratories was concordant and results can therefore be compared directly, despite considerable variation in protocols.

Recently, the STRAf method was demonstrated to have good interlaboratory reproducibility for *A. fumigatus* sub-typing (4). In this study where five laboratories participated, non-specific amplification products, bleed-through of the different fluorescent labels and inexperience of laboratories lead to some inconsistencies in results. Here, we present results of another multicenter study for *A. fumigatus* sub-typing that also had superior reproducibility. Such multi-laboratory reproducibility studies are essential to ensure that any proposed sub-typing method can be reliably employed for epidemiological studies.

Additionally and importantly, all data in this study were shared via the internet, thus confirming that the CSP typing scheme can be a portable and thereby a convenient strategy for interlaboratory data sharing or comparison. Furthermore, the data from such studies can easily be stored in a database and archived, retrieved, and reanalyzed at any time, making this a useful tool for global molecular epidemiological investigations of *A.*
fungatus. The use of inexpensive or free web-based software for data analysis makes this an attractive tool for small or cost-conscious laboratories. In summary, this international, multi-laboratory study confirms the reproducibility and portability of the CSP typing method.
Disclaimer

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the CDC.

Acknowledgements

B.L.W is supported by grant# PR054228, from the U.S. Army Medical Research and Materiel Command, Office of Congressionally Directed Medical Research Programs and National Institutes of Health, Contract No. N01-AI-30041. A.M.R. is supported by NIDCR grant DE14318 (CO STAR).
Table 1. CSP genotypes assigned to the *Aspergillus* panel, as reported by participating laboratories.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
<th>Lab 5</th>
<th>Lab 6</th>
<th>Lab 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CDC 3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1*</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CDC 4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CDC 5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CDC 6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2*</td>
<td>3</td>
</tr>
<tr>
<td>CDC 7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CDC 8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CDC 9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CDC 10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CDC 12</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CDC 14</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>1*</td>
<td>NP</td>
</tr>
<tr>
<td>CDC 15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CDC 19</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CDC 20</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CDC 21</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Each of the laboratories assigned a genotype number to all *A. fumigatus* isolates (except CDC 14 which is *A. flavus*).

NP- no product; *Denotes incorrectly assigned genotype
References

Isolation and characterization of a new fungal species, Chrysosporium ophiodiicola, from a mycotic granuloma of a black rat snake (Elaphe obsoleta obsoleta)

1Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA, 2Fungus Testing Laboratory, Department of Pathology and 3Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA, and 4Mycology Unit, Medical School, Rovira i Virgili University, Reus, Spain. 5Histo-Scientific Research Laboratory, Mount Jackson, VA. 6Animal Medical Center of Rome, Rome, Georgia

*Corresponding author: Sreekumari Rajeev, Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, 43 Brighton Road, Tifton, GA 31793.

Phone: (229) 386-3340.

Fax: (229) 386-7128.

E-mail: srajeev@uga.edu.
Abstract

Isolation and characterization of the new species Chrysosporium ophiodiicola from a mycotic granuloma of a black rat snake (Elaphe obsoletta obsoletta) is reported. The analysis of the sequences of different fragments of the ribosomal genes demonstrated that this species belongs to the Onygenales and that it is genetically different from other morphologically similar species of Chrysosporium. This new species is unique in having both narrow, cylindrical to slightly clavate conidia, and a strong pungent odor.

Keywords: snake, granuloma, Chrysosporium ophiodiicola
CASE REPORT

A black, male rat snake (Elaphe obsoleta obsoleta) of undetermined age was presented with a history of prolonged anorexia and slow growing facial masses. The snake was found as an adult at an old home site in an old barn near Sparta, Georgia by the current owner, a wildlife educator. The snake had been in his possession for four years and was frequently used in public educational performances in the southeast. Upon presentation, the snake had a 1 cm x 1.5 cm subcutaneous longitudinally ovoid swelling overlying his right ventral mandible area (Fig. 1A). He also had a 1 cm swelling overlying his right eye and extending down into the orbit, displacing the eyeball laterally, and displacing the palate and dorsal limit of the choana ventrally. The masses were lobular, whitish in appearance and enclosed in a thin capsule. The submandibular mass was removed in its entirety, as its capsule was very discrete. The other mass was very friable and locally extensive. Both masses were surgically removed and submitted for histopathological examination and culture. However, all portions of the second mass could not be completely removed due to its location, but the area enclosing it was debrided. At the time of surgery, the snake was treated with meloxicam ((Metacam, Boehringer Ingelheim Vetmedica, Inc., St. Joseph, MO)) at a dose of 0.2 mg/kg SID, enrofloxacin (Baytril, Bayer HealthCare LLC, Animal Health Division, Shawnee Mission, Kansas) at a dose of 5 mg/kg BID. This was continued until the histopathology report indicating a fungal infection was received. The enrofloxacin was discontinued and ketoconazole was initiated. Single oral administration of ketoconazole (Apotex, Inc., Toronto, Ontario) 50 mg/kg was administered daily. The snake was kept at 29.5°C and was tube fed Hill’s Prescription Diet (Hill’s Pet Nutrition, Inc., Topeka, KS) A/D 25 ml every 3 days. There was a moderate amount of postoperative swelling at the incision
over the orbit. This was treated with warm wet compresses daily and the swelling decreased.

The snake passed away 2 months after surgery.

The histopathological evaluation and primary culture was performed at the University of Georgia, Veterinary Diagnostic and Investigational Laboratory, Tifton, GA, USA under the accession 38816-06. Both masses consisted of multifocal to coalescing granulomas. The granulomas had central regions of amorphous eosinophilic and occasional cellular debris surrounded by an inflammatory cell infiltrate consisting of histiocytes, lymphocytes and occasional heterophils (Fig. 1B). Mild concentric fibrosis was surrounding these areas. Moderate numbers of hyphae and closely segmented arthroconidiating hyphae were found primarily within the centers of the granulomas. The hyphae were 3-7 μm broad, parallel-walled, segmented, and occasionally branching. Similar fungal structures were also observed with use of a Grocott-Gomori’s methenamine silver stain (Fig. 1C).

Routine bacterial and fungal cultures were performed from the tissue sample. For fungal culture, a portion of the sample was inoculated on a Sabouraud dextrose agar (Remel, Lenexa, KS) and incubated at 29°C for four weeks. Bacterial cultures were negative. A moderate to heavy and pure growth of a fungus was observed on fungal medium. Colonies were white in color and had sterile septate hyphae and no fruiting bodies were present. The fungus was unidentifiable using conventional laboratory techniques. The isolate was forwarded to the Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA, for morphologic identification and accessioned into the culture collection as UTHSC 07-604.
On potato flakes agar (PFA – prepared in-house) (12) at 23°C colonies were white to pale yellow with a similar reverse, velvety to granular with age, microscopically resembled a *Chrysosporium*, displayed conidia borne on stalks as well as arthroconidia, and produced a strong pungent odor. As the isolate did not appear to morphologically match any known *Chrysosporium* species, it was submitted to **Department of Microbiology and Immunology** for molecular characterization under accession number R-3923.

The ITS and D1/D2 regions were amplified using the DNA preparation methodology, primers, and PCR conditions as previously described (5, 12). PCR products were purified using a Qiaquick PCR purification kit (Qiagen, Valencia, CA) and then sequenced at the Advanced Nucleic Core Facility of the University of Texas. Each sequence was then used to search GenBank using the BLASTn algorithm at http://www.ncbi.nlm.nih.gov/. Sequencing of the ITS (614 bp length, accession # EU715819) and D1/D2 (486 bp length, accession # EU715820) regions failed to provide an unequivocal identification as the closest D1/D2 maximum identity was 93% (*Onygena corvina*, accession # AB075355) and the closest ITS maximum identity was 84% (*Arthroderma multifoldum*, accession # AB361651). However, sequence data confirmed the association of the clinical isolate with the *onygenalean* fungi. As the percentages of similarity with all the sequences deposited in the GenBank were very low, a conclusive identity could not be made. The isolate was forwarded to the Mycology Unit at Rovira i Virgili University in Reus, Spain, where further extensive morphologic and molecular phylogenetic studies were undertaken to characterize this fungus.

The morphological description of the present isolate is as follows:
Colonies on potato carrot agar (PCA; potato 20 g, carrot 20 g, agar 15 g, water 1L) (Fig. 2C) attained 27-29 mm diameter in 14 days at 25°C, and were white with uncolored reverse. They were felty, plane and fimbriate with a poorly defined margin. Sparse tufts of aerial mycelium were present on the submarginal zone. Vegetative hyphae were hyaline, branched, septate, smooth and thin-walled. They were 1.5-2.5 μm wide, and often disarticulating at maturity to form cylindrical, 7.5-10 x 2 -2.5 (3) μm arthroconidia adjacent to each other. Fertile hyphae arise as lateral branches. Terminal and lateral conidia were borne on straight or flexuose side branches of variable length (4.5-16 μm) or were sometimes sessile. Conidia were unicellular, solitary, thin-walled, smooth, hyaline to pale yellow, cylindrical to slightly clavate, (4.0-6.5 (9) x 2.0-3.0 μm) and were released by rhexolytic dehiscence, with broad and long basal scar (Figs. 2D-F).

Intercalary solitary conidia were often present, similar to the terminal and lateral ones. Racquet hyphae were scarce and chlamydospores were not observed. On potato dextrose agar (PDA; Difco Laboratories, Detroit, MI) the fungus grew more quickly and produced more dense colonies, 31- 35 mm diameter in 14 days at 25°C (Fig. 2B). They were white to pale yellow, buff after one month, powdery, with droplets of colorless or light yellow exudates at the periphery. On phytone-yeast extract agar (PYE, BBL, Cockeysville, USA) the colonies had 32-39 mm diameter in 14 days at 25°C (Fig. 2A), and they were white and light yellow at the centre, powdery and dense, with the presence of droplets of colorless exudate at the centre and a light brown reverse. On oat-meal agar (OMA; 30 g oat flakes, 1 g MgSO₄·7H₂O, 1.5 g KH₂PO₄, 15 g agar, 1 L tap water), the colonies were similar to those on PCA. The fungus had a very restricted growth at 15°C (5 mm diameter in14 days). At 37°C there was no growth. The colonies produced a strong pungent (skunk like) odor after one month of incubation in all the media tested.

Attempts to induce the teleomorph on OMA and sterile garden soil to which horse hair had been
added were unsuccessful after two months of incubation at 25ºC. However, a strong keratinolytic activity was noticed.

The main characteristics of the snake isolate were the presence of numerous narrow cylindrical to slightly clavate conidia and the strong pungent odor of the colonies. This odor is not rare in the Onygenales since other species such as Chrysosporium mephiticum Sigler and Aphanoascus mephitalis (Malloch & Cain) Cano & Guarro show similar characteristics (12). However, these species can be easily differentiated from the present fungus by their morphology; C. mephiticum has pyriform to subglobose conidia occurring more or less synchronously and A. mephitalis usually produces the teleomorph in culture and has a Malbranchea anamorph. In addition, these species show very different ITS sequences (4, 6, 14) (Fig.3). Narrow cylindrical conidia are also produced by Chrysosporium europae Sigler, Guarro & Punsola. But this species can be easily differentiated from the new species by its characteristic vinaceous buff pigmented colonies on PYE and the absence of strong pungent odour (11).

The combined morphological, cultural and molecular characteristics of the snake isolate do not correspond to any of the species described to date within the genus Chrysosporium. Thus, the new following new species is proposed:

Chrysosporium ophiidiicola Guarro, D.A. Sutton, Wickes, and Rajeev, *sp. nov.*

Etym.: from the Greek *ophio*, snake.

Ad fungos conidiales, hyphomycetes pertinens.

Coloniae in agaro cum decocto tuberorum et carotarum (PCA) post 14 dies ad 25 C, 27 – 29 mm diametro celeriter crescentes, planae, albae; reversum hyalinae. Coloniae in agaro cum decocto tuberorum (PDA) post 14 dies ad 25 C, 31 – 35 mm diametro; in agaro phytone extracto levedinis (PYE)

The phylogenetic analysis of the ITS region of C. ophidiicola and other related onygenalean fungi was performed with MEGA 2.1 software (7), using the Neighbor-joining (NJ) method and based on Kimura's 2-parameter corrected nucleotide distances. The Chrysosporium anamorph of Nannizziopsis vriesii was the nearest species to C. ophidiicola in the ITS neighbor-joining tree (Fig. 3). Both species are associated with infections in reptiles.

Chrysosporium ophidiicola was isolated from a subcutaneous granuloma of a snake, which is not an unusual source for recovering chrysosporia. The Chrysosporium anamorph of Nannizziopsis vriesii has been isolated from cases of dermatitis in snakes (2, 15) chameleons (9), crocodiles (13), bearded dragons (3) and from a nasal granuloma in an Ameiva lizard (8). In a recent report a Chrysosporium species related to Nannizziopsis vriesii has been isolated from a case of cutaneous hyalohyphomycosis from two green iguanas (1). Phenotypically C. ophidiicola can be separated from Chrysosporium anamorph of Nannizziopsis vriesii by the absence of asperulate fertile hyphae, globose to pyriform conidia sometimes grouped in clusters, and the presence of odor in the colonies of the former.

Acknowledgements:
We would like to thank the staff of bacteriology and histopathology sections of VDIL, UGA Tifton for technical support. B.L.W is supported by grant # PR054228, from the U.S. Army Medical Research and Materiel Command, Office of Congressionally Directed Medical Research Programs. A.M.R. is supported by NIDCR grant DE14318 (CO STAR). J. G and J.F.C are supported by grant # CGL2007-65669/BOS, from Ministerio Educación y Ciencia, Spain.

REFERENCES

Chrysosporium anamorph of Nannizziopsis vriesii associated with fatal cutaneous

disseminated infection due to Chrysosporium queenslandicum in a garter snake
1 FIGURE LEGENDS

2 Fig. 1

3 1A: Cutaneous masses

4 1B: H&E stained section of the lesion

5 1C: GMS stained section of the lesion

6 Fig. 2

7 Colonial and microscopic morphology of *Chrysosporium ophiodiicola* R-3923.

8 2A: Phytone yeast-agar, front and reverse;

9 2B: Potato dextrose agar, front and reverse;

10 2C: Potato carrot agar, front and reverse;

11 2D: Fertile hyphae and conidia;

12 2E: Conidia showing remnants of wall following rhexolytic dehiscence;

13 2F: Fertile hyphae with arthroconidia and, terminal and lateral conidia.

14 Fig. 3.

15 Neighbor-joining tree based on Kimura 2-p corrected nucleotide distances among ITS1-5.8s

16 ITS2 rDNA sequences of the species compared with *Chrysosporium ophiodiicola*. Branch
lengths are proportional to distance. Bootstrap replication frequencies over 70% (1000
replications) are indicated on the nodes. Abbreviations: A., *Aphanoascus*; C.,
Chrysosporium; Cor., *Corynascus*; N., *Nannizziiopsis*; an., anamorph.
Strain-Dependent Variation of 18S rDNA Copy Number in *Aspergillus fumigatus*

Herrera¹, M.L., Vallor², A.C., Gelfond³, J.A., Patterson², T.F., and B.L. Wickes¹,⁴.

¹Department of Microbiology and Immunology; ²Department of Medicine, and Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, and ⁴The San Antonio Cancer Institute

Keywords: Taqman, quantitative real time PCR, aspergillosis, ribosomal

Running Title: *Aspergillus fumigatus* rDNA copy number

Contact: Brian L. Wickes, PhD
Dept of Microbiology and Immunology
The University of Texas Health Science Center at San Antonio
7703 Floyd Curl Dr, Mail Code 7758
San Antonio, TX 78229-3900
(Tel) 210-567-3938
(Fax) 210-567-6612
(E-mail) wickes@uthscsa.edu
Enumerating *Aspergillus fumigatus* colony forming units (CFU) can be challenging since CFU determination by plate count can be difficult. CFU determination by quantitative real time PCR (qPCR), however, is becoming increasingly common and usually relies on detecting one of the subunits of the multicopy ribosomal RNA genes. This study was undertaken to determine if rDNA copy number was constant or variable among different *A. fumigatus* isolates. FKS1 was used as a single copy control gene, and was validated against single copy (*pyrG* and *ARG4*) and multi copy (*arsC*) controls. Copy number of the 18S rDNA subunit was then determined for a variety of isolates and was found to vary with strain, from 38-91 copies per genome. Investigation of the stability of 18S rDNA copy number after exposure to a number of different environmental and growth conditions, revealed that the copy number was stable, varying less than one copy across all conditions including isolates recovered from an animal model. These results suggest that while the ribosomal genes are excellent targets for enumeration by qPCR, the copy number should be determined prior to using them as targets for quantitative analysis.
INTRODUCTION

Aspergillosis is caused by pathogenic fungi in the genus *Aspergillus* and includes allergic, superficial, saprophytic and invasive disease (12). The frequency of invasive aspergillosis (IA) continues to increase due to a growing population of immunosuppressed individuals. In fact, *A. fumigatus*, the most frequent *Aspergillus* species in IA cases (19), is now the most common airborne human fungal pathogen (25). Once infected, the mortality rate from IA can be unacceptably high for some patient populations, ranging from 70-90% depending on the patient type (7, 13, 31). However, in spite of the severity of disease, the ubiquitous nature of *Aspergillus* in the environment makes exposure difficult to avoid, consequently susceptible patients will almost always be at risk for infection.

The life-threatening nature of IA makes accurate diagnosis and early detection crucial. Quantitative real time PCR (qPCR) is emerging as a sensitive and cost-efficient technique for detecting *Aspergillus* spp. from a diverse variety of sources, including clinical specimens. Investigators studying IA with animal models routinely use qPCR to measure fungal load (17, 27), including response to drug treatment (6, 42). Bioaerosol quantitation of *Aspergillus* spp., particularly in the hospital environment, is also amenable to qPCR (32). Finally, even though qPCR is not the first choice for clinical diagnosis of IA, it has proven useful for quantitating *Aspergillus* spp. from a variety of patient specimens (2, 26, 37) and has proven extremely useful as a secondary assay for comparative purposes during assay development (8, 23).

One of the drawbacks of PCR-based detection methods is a lack of standardization (5) and one of the first areas to standardize is selection of an appropriate target for amplification. The quantitative nature of qPCR allows an estimation of colony forming units (CFU) by equating the copy number of the target sequence with genome number through a simple ratio, provided the ratio remains invariant. In fungi the ribosomal genes have proven to be useful PCR targets...
because of their sequence conservation, which has allowed the use of universal primers that enable the amplification of targets from unknown species. A second advantage of using the rDNA genes as an amplification target is the copy number, which can be 10-100x that of single copy genes (29, 30). However, in A. fumigatus, it is unclear whether all strains have the same number of rDNA subunits units. In other fungi, rDNA copy number is known to vary (4, 15, 16, 20, 29), although these observations have been made in fungi that are not frequently recovered as human pathogens. Given what is known in other organisms about the variability of rDNA copy number and the importance of A. fumigatus as a human pathogen, this study was performed in order to determine if rDNA copy number is constant or strain-specific in A. fumigatus.

MATERIALS AND METHODS

Strains and Media Strains used in this study are shown in Table 1 and were confirmed to be A. fumigatus by colony morphology and DNA sequencing of the ITS and D1/D2 regions. Each strain was grown on Sabouraud’s dextrose (SAB) (Difco Laboratories, Detroit, MI) or Potato Dextrose (PD) broth or agar (Fisher Scientific, Pittsburgh, PA) for all assays, unless otherwise indicated. Agar media was prepared from broth by solidification with 2% agar. RPMI 1640 without L-glutamine (Mediatech, Inc., Herndon, Va) was prepared by filter sterilizing and adding to an autoclaved solution of 2% dextrose and 2% agar (BD Diagnostic Systems, Franklin Lakes, NJ).

DNA isolation Individual strains were inoculated into 200 ml of SAB broth in a 500 ml flask from a 7-day old suspension of ~5 x 10^8 conidia harvested from a PDA plate. The hyphae were recovered after 24 h by filtering through an 18.5 cm, 0.45-mm pore size Whatman disk.
(Whatman, Florham Park, NJ), and washed with sterile saline. DNA isolation followed methods reported elsewhere (22, 41) with slight modifications. After the saline wash, approximately 200 mg of wet hyphae were briefly dried by blotting between Whatman paper (Whatman) and then placed into a sterile mortar and frozen for 10 min at -70°C. Fungal cell walls were mechanically broken by grinding with a pestle for 1-2 min after the addition of sterile sand and 2 ml of Masterpure Yeast DNA purification kit lysis buffer (Masterpure Yeast DNA purification kit, Epicentre Technologies, Madison, WI). The slurry was transferred to 2 x 1.5 ml microfuge tubes and spun at low speed (500 x g) for 15 sec to pellet the sand. Four hundred microliters of the supernatant were transferred to a 2.0 ml screw-capped microfuge tube and incubated at 65°C for 2 hours, after the addition of 6 µl of proteinase K (50µg/mL) from the DNA purification kit. Samples were processed from this point as described (22). After the final wash, the dried pellets were resuspended in 200 µl ultra pure water (Invitrogen, Carlsbad, CA). DNA was assessed for quality and quantified by gel electrophoresis and 260:280 nm absorbance ratio.

Due to the possibility of contamination of Aspergillus DNA with polysaccharides in crude DNA preps, DNA was further purified prior to performing qPCR assays. DNA was run in a 1.0% low melting-point agarose (InCert; FMC BioProducts, Rockland, Maine) gel to separate it from contaminating materials. Gel fragments containing DNA were recovered, placed into 1.5 ml microfuge tubes, and then treated with Gelase (Epicentre) according to manufacturer’s instructions. Purified DNA was assessed and quantitated by spectrophotometer and agarose electrophoresis as above. Yields were 100 µg-500 µg.

Growth Conditions to Evaluate Stress Effect on rDNA Copy Number
In order to measure the effect of colony age on rDNA copy number, DNA was prepared from *A. fumigatus* strain AF293 grown for 3d, 5d, 10d, and 25d on PDA plates at 30°C. AF293 was also tested for the effect of temperature on copy number by preparing DNA from cultures grown at 30°C and 45°C for 5d on PDA plates. DNA was isolated and processed from each condition as previously described (22).

The effect of antifungal exposure on copy number was measured by harvesting AF293 grown in the presence of itraconazole (Oakdell Pharmacy, San Antonio, TX) using a modification of the standard MIC assay. Conidia were harvested from a 5 day old PDA plate grown at 30°C overnight and used to prepare inoculums containing 4.5 x 10^6 CFU/ml. Each inoculum (10 mL) was then grown overnight at 30°C in the presence of different itraconazole concentrations (0 µg/mL, 0.03 µg/mL, 0.06 µg/mL, 0.125 µg/mL, 0.25 µg/mL, 0.5 µg/mL, 1.0 µg/mL, 2.0 µg/mL) under modified MIC conditions described by the National Committee for Clinical Laboratory Standards (38). DNA was then recovered as described above.

In order to determine what effect morphology had on copy number, AF293 DNA was isolated from pure conidia and hyphae. Conidial cultures were prepared from PDA plates grown for 11 days at 30°C and harvested by washing with 10 ml of sterile PBS-0.1% Tween 20. The suspension was pelleted by centrifugation at 4800 x g for 10 min. The supernatant was discarded and the conidial pellet was transferred to a 1.7 ml microcentrifuge tube and washed once with 500 µl of sterile water and once with 500 µl of 0.1 M MgCl2. Hyphae were prepared as described (22). Conidial and hyphal DNA were recovered as described above.

The effect of growth *in vivo* during animal model infection on copy number was determined by passing AF293 through animals as follows. Non immunosuppressed mice and guinea pigs were infected as described by Sheppard *et al.* (34). Lungs and kidneys were
harvested 5d post infection. DNA was extracted from tissue according to the Standard Operating
Procedures for Invasive Aspergillosis Animal Models (http://www.sacmm.org/sop.html) and recovered in 100 µl of QIAamp DNA mini-kit elution buffer (Qiagen, Valencia, Calif.). After quantitation, DNA was stored at -20°C until analyzed.

PCR and qPCR primer and probe design

The PCR primer and probe sequences used to quantitate and amplify *A. fumigatus* target genes are shown in Table 2. Primers for qPCR were designed using Primer Express Software v2.0, which is an application-based design software provided by ABI (Applied Biosystems, Inc., Foster City, CA), or were designed based on previously published reports. The primers and probe for the *A. fumigatus FKS1* gene were designed according to Costa *et. al.* (10). The primers and probe for the 18s rDNA sequence were also based on a previous study (6). The *FKS1* gene was chosen because it is a known single copy gene in *A. fumigatus* involved in β (1–3) glucan synthesis (3), and was used as an internal control. The *pyrG* gene, which encodes orotidine-5’- monophosphate decarboxylase, was also included as a second single copy reference gene (11, 44) and used to confirm *FKS1* copy number determination. *ARG4*, which encodes carbamoyl-phosphate synthase, was the third single copy reference gene used in this study and was identified from the genome sequence.

In order to test our ability to discriminate multiple copy genes, a duplicated gene was selected for analysis. The *arsC* (arsenate reductase) gene is a duplicated gene found in some but not all strains of *A. fumigatus*, and is present in the AF293 genome sequence as two copies (33). Since *arsC* is not present in all *fumigatus* strains, we reconfirmed that it was present in AF293 in two copies using a method independent of qPCR. Based on the sequences of *arsC* from the two
chromosomal locations, allele specific primers were designed that spanned an *Nco* I site within the coding sequence of each *arsC* allele (Table 2). The chromosome 1 *arsC* primers consisted of Ch1arsC.F and Ch1arsC.R. The chromosome 5 *arsC* primers consisted of Chr5arsC.F and Chr5arsC.R. Each allele was amplified using the following conditions, 94°C for 2 min, 32 cycles 94°C for 15 s, 58°C for 30 s, 72°C for 30 s, and a final extension of 72°C for 2 min. The amplicons were then digested with 5U of *Nco* I (New England Biolabs, Beverly, MA) at 37°C for 3h and then separated on a 3% NuSieve GTG agarose gel (Cambrex Bio Science Inc., Rockland, ME). Sizes were then compared to the sizes predicted from the genome sequence.

qPCR Validation Assays and Calculations

FKS1, *pyrG*, *ARG4* (single copy genes), *arsC* (two copy gene) and 18s rDNA (multiple copies) gene copy number determinations were done by qPCR (Taqman) assay according to the method of Townson *et. al.* (39), with modifications. In order to determine the copy number of a variable gene (18s rDNA), a single copy reference gene needed to be identified and confirmed to be present in 1 copy/genome. Since the *FKS1* gene is highly conserved in fungi and has been shown in a number of reports to be present in single copy in *A. fumigatus* (3, 14, 33), we selected this gene to use as the single copy reference probe in the qRT-PCR reactions. Confirmation was performed by comparison to other *A. fumigatus* genes already known to be single copy. The single copy genes, *pyrG* and *ARG4*, were confirmed using relative quantification (ratios of one gene to another) to determine the number of copies present per genome. Quantification standards were run in conjunction with each set of samples after primers and probes for *FKS1*, 18S rDNA, *pyrG*, *ARG4*, *arsC* genes were optimized for template concentration and primer efficiencies (1).
qPCR reactions were performed in triplicate using an ABI/PRISM7900 Sequence Detector System (ABI) to detect MGB probe binding. *FKSI* was quantitated using both VIC and FAM dyes and used as a reference for comparison to the 18S rDNA FAM probe from each strain. Five serial 1:2 dilutions (20.0, 10.0, 5.0, 2.5, 1.25, 0.625 ng/µl) of genomic DNA from *A. fumigatus* AF293 were used to generate standard curves of Ct (threshold cycle) value against the log DNA concentration on each PCR plate for the *FKSI* and 18S rDNA genes. Each experiment was performed three separate times from one DNA preparation and run in duplicate. Ct values were determined, and then converted into template quantity. After the creation of standard curves, copy numbers of each gene were determined by DNA quantification using Taqman technology. PCR cycle numbers were plotted against the value of 5’ fluorescence signal, and then threshold values were plotted against the copy number of the template DNA, which were used to generate standard curves (1).

Absolute quantification using the ABI/PRISM7900 requires that the absolute quantities of the standards be determined by some independent means first. In this study fungal DNA was used to prepare absolute standards. Concentration and DNA quality were measured by A260 and gel electrophoresis, and converted to the number of copies using the molecular weight of the DNA. The equation $Ct = m \log \text{quantity} + b$ from the equation for a line $y = mx+b$ was constructed by plotting the standard curve of log quantity versus its corresponding Ct value. If the curve demonstrated an r^2 value > 0.980 the standard curve then was used to determine sensitivity, primer efficiencies, and dynamic range, as well as specificity and reproducibility of every assay (*FKSI*, 18S rDNA, *pyrG*, *ARG4*, *arsC*). Amplification of serially diluted genomic DNA (standard curves) from *A. fumigatus* AF293 was repeated in triplicate, on different days, in order to test reproducibility, primer efficiencies, and DNA optimal dilutions for the rest of the
genes (pyrG, ARG4, and arsC). DNA concentrations ranged from 20.0 to 0.625ng/µl. Specificity for all the assays was assessed by using DNA extracted from Candida albicans SC5314, as well as mouse and guinea pig DNA (9, 28). Comparative copy numbers for confirmation experiments were determined using the relative quantification (Delta Ct) $2^{-\Delta Ct}$ method. The 18S rDNA copy numbers were determined by the absolute quantitation method, where total copies were first calculated using: total 18S rDNA copies = $10((Ct-b)/m)$. The number of 18S rDNA copies per genome were then determined by: 18S rDNA copies per genome = (total copies 18S rDNA)/(total copies FKS1). Copy number was calculated as the ratio of template quantity for 18S rDNA to the template quantity for FKS1.

Statistical Methods

In each experiment, we altered one factor at a time under controlled conditions. This approach minimized the sources of variability within an experiment and maximized statistical power for detecting effects of a single factor on differential copy number. Results after determination of 18s rDNA copy numbers were compared by the Wilcoxon rank sum test for morphology and temperature. The Wilcoxon signed rank test was used to compare copy numbers from different tissues in the same animal, and the Kruskal-Wallis test was used to compare culture age and antifungal susceptibility. Statistical analysis was done at the University of Texas Health Science Center at San Antonio Department of Epidemiology and Biostatistics. Two-tailed P values less than 0.05 were considered significant.

RESULTS

Copy number confirmation of FKS1
A number of confirmatory assays were performed to verify that FKS1 was present as a single copy in AF293. First, absolute quantitation was performed using FKS1 probes labeled with two dyes; FAM and VIC. The slope of the VIC line was -3.9341 (from y=-39341x + 52.288) while the slope for the FAM line was -3.8971 (from y=-3.8971x + 51.593). The R² values of the VIC and FAM lines were .9946 and .9982 respectively, demonstrating that comparable results could be obtained independent of dye type. The copy number of FKS1 was next determined in a subset of A. fumigatus strains (WSA-172, -445, -621, -419) by absolute quantitation using FKS1 labeled with FAM and VIC for each strain. FKS1 copy numbers determined by qPCR ranged from 0.93-1.10 copies and were rounded to 1 copy based on the close integer scoring method (18) so that it could be used as the single copy reference gene when determining copy number of other genes. We next compared the copy number of FKS1 to other known single copy genes (ARG4, pyrG) using absolute quantification. The corresponding calculations of copy number of the three genes in AF293 by comparison of the Ct values confirmed that each gene was present in single copy. This outcome was also observed in other A. fumigatus isolates (Table 3) and confirmed that FKS1 was suitable as a single copy control gene.

Detection of a multi copy gene in A. fumigatus

In order to accurately quantitate multi copy genes, it was necessary to demonstrate that FKS1 could be used to quantitate a multi copy gene of known copy number. Furthermore, we were interested in knowing how discriminatory our strategy would be with regard to copy number accuracy. To make this determination we decided to use a multi copy gene that was present in low copy number and chose arsC as a target. Sequence analysis of arsC from the AF293 genome suggested that it was present in two copies, one copy on chromosome 1 and one copy on
chromosome 5. Careful inspection of the two sequences by DNA alignment revealed that a combination of primer position and restriction digestion would confirm the presence of two copies, after gel electrophoresis, based on the predicted sizes of digestion products of the PCR reaction (Fig. 1A). Figure 1B confirms that the predicted digestion patterns of the two \textit{arsC} alleles matched what was observed in the gel after electrophoresis.

Quantitative real time PCR was next used to determine the copy number of \textit{arsC} in AF293. The Ct values were determined for the \textit{arsC} sequences and compared to \textit{FKS1}, which was used as the single copy control. The output graph from the reaction shows an earlier Ct for \textit{arsC} than for \textit{FKS1} (Fig. 2), consistent with the greater copy number of \textit{arsC}. Calculation of copy number of \textit{arsC} for AF293 and for other isolates demonstrated that \textit{arsC} is present in 2 copies (Table 4), which confirmed that our strategy could determine the copy number of multi copy sequences.

\textbf{Determination of rDNA copy number}

Once \textit{FKS1} was established as a reliable single copy control, this sequence was used to determine the copy number of the rDNA genes in \textit{A. fumigatus} by quantitating the copy number of the 18S ribosomal DNA subunit. Since the copy number of the rDNA genes of AF293 has been determined from the genome sequence, this isolate was used in a pilot Taqman assay in which \textit{FKS1} (single copy) was used to calculate the copy number of the 18S rDNA subunit. According to the genome sequence, AF293 has 35 copies of the rDNA genes per genome (33). Figure 3 shows an example of the plots of \textit{FKS1} vs. 18S rDNA and clearly demonstrates that there are more copies of the 18S rDNA gene than the \textit{FKS1} gene. Calculation of the 18S rDNA copy numbers resulted in a value of 38 copies of 18S rDNA per genome in AF293, which is in
fairly close agreement with the genomic copy number (38 vs. 35 copies) for AF293 (33). The 18S rDNA copy numbers of the remaining isolates were then determined using FKS1 as the reference gene. The data show a range of 38-91 copies, with an average of 54 copies per genome (Table 5). These results show that for our set of isolates, 18S rDNA copy number is isolate-specific and can vary substantially from strain to strain.

Stability of rDNA copy number

Since our results indicated that rDNA copy number could vary among strains of A. fumigatus, we investigated various environmental conditions to determine whether or not an effect on copy number could be observed. Factors that were investigated included morphology, growth temperature, culture age, antifungal exposure (itraconazole), and animal model organ site (lung vs kidney). The overall copy number mean was found to be 38.032 ± 0.13, which agrees with our initial copy number determination of AF293. However, Table 6 shows that some significant differences in copy number were observed among our growth conditions (morphology, growth temperature, culture age). In spite of these differences, variation in copy number among all conditions tested was less than 1 copy and would all have been 38 copies if numbers were rounded.

DISCUSSION

Timely diagnosis of IA is challenging due to the lack of specific clinical manifestations of infection. Unfortunately symptoms can be non-specific and include: fever, cough, dyspnea, chest pain, or apnea. Therefore, diagnosis can be dependent on the combination of a strong index of suspicion and radiologic findings, serologic assays, or when possible, culture and/or histologic
findings (24). For any of these methods, a quantitative estimate of fungal burden is difficult at best and can be expensive or time consuming. In fact, even under controlled experimental conditions of animal modeling, colony counts can be misleading as some studies have noted decreasing counts that are contradicted by other measurements in the same animal (35, 36). The ubiquitous nature of *A. fumigatus* in the environment and associated possibility of inhaling fungal elements that may or may not grow *in vivo*, but could be detected as CFU after lavage further complicates making an accurate assessment.

Through advances in instrumentation and reagent chemistry, PCR continues to find new applications in clinically relevant areas. In spite of not being widely employed as a routine clinical diagnostic tool for detecting IA, PCR is proving increasingly useful as an investigational tool for studying aspergillosis both *in vitro* and *in vivo*, and may ultimately find its way into the clinical laboratory as a routine diagnostic tool for IA. For *in vivo* applications of animal infections, qPCR is often used to make a determination of CFUs, which are frequently expressed as conidial equivalents in order to indicate one nucleus per conidium. While CFU is fairly accurate for fungi that grow in a yeast morphology, CFUs obtained by plate counts can be difficult to interpret for filamentous organisms due to the inability to distinguish a single hypha that forms one colony from the same fragmented hypha that yields multiple colonies. In fact, using CFU for measuring *A. fumigatus* fungal loads has been shown to yield equivocal results (6, 35). Therefore, alternative methods that don’t require obtaining viable colony counts but provide some indication of fungal burden are potentially useful for quantifying fungal load of a given specimen. qRT-PCR is exceptionally well suited for this requirement. In fact, when all protocols are standardized, from infection model through tissue preparation, reproducible results can be obtained, even among interlaboratory studies (34).
The observations in this study add an important caveat for standardized procedures to now include working with the same *A. fumigatus* strain when qPCR quantitation using the rDNA genes is required. Our results have shown that using an 18S rDNA target requires prior knowledge of copy number in the strain of interest. In our small sample size, we found copy number to vary by as much as ~2.5x. Neither the upper limit nor the lower limit of 18S rDNA copy number is known, but it is almost certain to vary by a larger amount than we observed for our set of isolates. Consequently, 18S rDNA copy number cannot be assumed based on another value previously determined from an unrelated strain. This observation presently does not have direct clinical implications since qPCR is not routinely used to diagnose IA, and fungal burden is rarely part of any diagnosis since for at risk patients, a positive assay regardless of amount, is always cause for concern. However, accurate quantitation of *A. fumigatus* CFU has numerous applications, many of which have clinically relevant consequences. These include data generated from more than one strain, or testing unknown strains, in experiments measuring tissue burdens, *in vivo* drug susceptibility testing, environmental quantitation, tracking CFU during disease progression, or comparison of different methods for measuring fungal load (2, 17, 32, 35, 42). Similarly, direct quantitative comparisons of the same or different strains that utilize qPCR vs some other method, such as CFU or galactomannan, can be erroneous in the absence of an accurate rDNA copy number. Finally, model systems that may use the same assay but different strains and report results in CFU, such as animal survival studies, typically use absolute numbers and therefore, need to be calculated accurately if qPCR is part of the methodology. However, in spite of the variation between strains, our results suggest that within strain variation, at least in the case of AF293, is negligible. Therefore, in studies that utilize the same strain and involve quantitation, qPCR using the rDNA genes should yield consistent results. We could not identify
any condition that was able to cause the 18S subunit number to vary by more than 1 copy within
AF293 in spite of investigating a number of stress conditions. However, we did identify some
significant differences in our analyses. We suspect these differences may have been due to
experimental error since qPCR accuracy requires precise technique. On the other hand, we know
nothing about the mechanism by which copy number variation occurs and what, if any,
phenotypic consequences are associated with changes in copy number within a strain. The fact
that different strains of *A. fumigatus* have different rDNA copy numbers is evidence that
variation occurs. Since our qPCR assay can only detect whole copies (a fraction of a copy would
not yield a PCR product), the data could have arguably been rounded to the nearest whole copy.
In this case, all copy numbers would round to 38, which matches the control AF293 number.
However, since we cannot rule out copy number heterogeneity within a population, we chose not
to round the data. Future studies of copy number should focus on whether changes are rapid,
such as by an unequal recombination event that leads to large gains or losses of rDNA repeats, or
gradual, which could result in small changes of a unit or two over longer periods of time.
Understanding the mechanism may reveal whether or not the changes are responses to selection,
or are random without clear phenotypic consequences.

In spite of the observed copy number variation within *A. fumigatus*, application of these
results to other species of *Aspergillus* probably should not be done without empirical analysis.
Aspergillus taxonomy can be complicated by the existence of sections, which may not be
discriminated at the clinical level, but can be discriminated at the molecular level. For example,
in the *Aspergillus* section *Fumigati*, *A. fumigatus* may not be discriminated from other members
such as *A. lentulus* or *A. brevipes*. However, these species can be identified by sequencing select
loci (ie., β-tubulin). Therefore, rDNA variation could possibly indicate a separate subspecies. In
our study, we confirmed that our strains were all *A. fumigatus* using β-tubulin sequencing (data not shown), but since so little is known at the molecular level about these sub genera, confirmational sequencing of additional loci may be required when trying to quantitate unknown isolates.

Although we targeted the 18S rDNA subunit in this study, determination of copy number should hold for targets that lie within the 28S subunit or between the two subunits (ITS1, ITS2, 5.8S) as well since the large and small ribosomal subunits, though multicopy and tandemly arrayed, are colinear and transcribed as a single transcript along with the intervening ITS region (21, 43). Therefore, based on what is known in model fungi, the copy number of the 18S and 28S genes, as well as the intervening sequences, should be the same in the same strain of *A. fumigatus*. The advantage of primer design in the more variable ITS1, ITS2 or even the D1/D2 region of the 28S subunit is that species specificity can be possible, subspecies issues as described above not withstanding. If, on the other hand, the increased sensitivity of targeting the multi copy rDNA genes is not needed, a suitable single copy gene (i.e., *FKS1*, *ARG4*, *pyrG*) can be used with fairly high confidence that it will be invariant among unrelated strains and equal to 1. Finally for presence or absence outcomes, copy number variation is probably not a concern, however, given that the ribosomal genes are usually targeted due to their increased sensitivity, if investigators are quantitating cell numbers using these genes, the strain-specific variability of rDNA copy number may be an important factor that affects the sensitivity of PCR assays for quantifying *Aspergillus fumigatus*.
ACKNOWLEDGEMENTS

This study was supported with federal funds from the National Institute of Allergy and Infectious Diseases under contract no. N01-AI-30041 to TFP. BLW is supported by grant# PR054228 from the U.S. Army Medical Research and Material Command, Office of Congressionally Directed Medical Research Programs. We thank William R. Kirkpatrick, Laura Najvar, and Rose Bocanegra for technical assistance. We also thank Fei Du for help with statistical analysis.
REFERENCES

18. Gonzalez, E., Kulkarni, H., Bolivar, A., Mangano, R., Sanchez, G., Catano, R. J.,
Nibbs, B. I., Freedman, M. P., Quinones, M. J., Bamshad, K. K., Murthy, B. H., Rovin,
W. Bradley, R. A. Clark, S. A. Anderson, J. O'Connell, R. B. Agan, S. S. Ahuja,

transcribed spacer regions as molecular targets to detect and identify human fungal

isolation from *Aspergillus fumigatus* and other *Aspergillus* species. J Clin Microbiol
42:4293-6.

fumigatus*-specific DNA, (1-3)-beta-d-glucan and galactomannan in serum and

Einsele. 2000. Quantification of fungal DNA by using fluorescence resonance energy

Patterson, K. Dietz, R. Bialek, and H. Einsele. 2002. Polymerase chain reaction
detection of *Aspergillus* DNA in experimental models of invasive aspergillosis. J Infect
Dis 185:1203-6.

2000. Comparison of DNA-based typing methods to assess genetic diversity and
relatedness among *Candida albicans* clinical isolates. Rev Iberoam Micol 17:49-54.

30. Maleszka, R., and G. D. Clark-Walker. 1993. Yeasts have a four-fold variation in

aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and

method to detect and quantify *Aspergillus fumigatus* conidia by quantitative PCR for
environmental air samples. Mycopathologia 158:325-35.

FIGURE LEGENDS

FIGURE 1. Confirmation of arsC copy number in AF293. A) Priming sites for the two arsC alleles. The Chr1 arsC allele is located on chromosome 1 while the Chr5 arsC allele is located on chromosome 5. Primers are indicated by black arrows, PCR product is indicated by the line connecting the primers. The three Nco I sites (N) (1 located within and 2 flanking the arsC genes) with location in bp, are indicated within parentheses. Stippled boxes are the arsC orfs. The predicted sizes of the fragments after Nco I digestion are indicated below each orf. B) Nco I digestion of arsC PCR products. Lane 1, uncut Chr1 arsC PCR product, lane 2, Nco I digest of Chr1 arsC, lane 3, mixture of both Nco I digestions, lane 4, Nco I digestion of Chr5 arsC PCR product, lane 5, uncut Chr5 arsC PCR product. Sizes are in base pairs. L = ladder. Ladder sizes are on the right of the gel, fragment sizes are on the left.

FIGURE 2. Amplification plot of AF293 arsC vs FKS1 taqman assays. Taqman assays were performed using an arsC primer probe combination and FKS1 primer probe combination. The graph represents a sample plot from duplicate reactions run on aliquots of the same DNA sample. Amplification of the arsC gene is denoted by circles. Amplification of the FKS1 gene is denoted by squares. The Ct value of the arsC line is approximately 21.1 (downward arrow) and the Ct value of FKS1 is approximately 22.1 (upward arrow).

FIGURE 3. Amplification plot of 18S rDNA vs FKS1. An example of copy number determination of 18S rDNA using FKS1 as a single copy control. The figure is an amplification plot of a Taqman assay done using the 18S rDNA primer-probe combination and FKS1 primer probe combination. Template DNA was taken from the same DNA sample prepared from AF293 and run in duplicate. Note the earlier Ct value of 18S rDNA (circles), which is approximately 18.0 (downward arrow) vs. the FKS1 Ct value (squares), which is approximately 23.4 (upward arrow). The lower Ct value for 18S rDNA reflects the greater copy number of the target since the fluorescence crosses the threshold at a much lower cycle number.
Table 1. Strains used in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Source</th>
<th>Contributor/Strain alias/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF293</td>
<td>Clinical</td>
<td>R. Aramayo</td>
</tr>
<tr>
<td>WSA¹-172</td>
<td>Clinical</td>
<td>M. Rinaldi (#98-407)</td>
</tr>
<tr>
<td>WSA-270</td>
<td>Clinical</td>
<td>ATCC#64746</td>
</tr>
<tr>
<td>WSA-271</td>
<td>Clinical</td>
<td>ATCC#14110</td>
</tr>
<tr>
<td>WSA-419</td>
<td>Clinical</td>
<td>K.J. Kwon-Chung (#B-5233) (40)</td>
</tr>
<tr>
<td>WSA-445</td>
<td>Clinical</td>
<td>T. Patterson (#MTFP0009)</td>
</tr>
<tr>
<td>WSA-446</td>
<td>Clinical</td>
<td>M. Rinaldi (#99-1900)</td>
</tr>
<tr>
<td>WSA-621</td>
<td>Clinical</td>
<td>B. Lutz (#1)</td>
</tr>
</tbody>
</table>

¹WSA isolates are isolates from the Wickes laboratory culture collection.
Table 2. PCR primer and probe sequences.

<table>
<thead>
<tr>
<th>Primer/Probe</th>
<th>Sequence</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S rDNA.F</td>
<td>5'-GGCCCTTAATAGCCCGGT-3'</td>
<td>(10)</td>
</tr>
<tr>
<td>18S rDNA.R</td>
<td>5'-TGAGCCGATAGTCCCCCCTAA-3'</td>
<td></td>
</tr>
<tr>
<td>18S rDNA probe</td>
<td>6-FAM-AGCCAGCGCCGCAATT-MGBNFQ</td>
<td></td>
</tr>
<tr>
<td>AFKS.F</td>
<td>5'-GCCCTGCTAGTGAGCTCGGT-3'</td>
<td>(6)</td>
</tr>
<tr>
<td>AFKS.R</td>
<td>5'-CGGTGAAATGAGCGATGCTTCC-3'</td>
<td></td>
</tr>
<tr>
<td>AFKS probe</td>
<td>6-FAM-TCTTTCTCTTCCCGGCAGCC-MGBNFQ</td>
<td></td>
</tr>
<tr>
<td>ARG4.F</td>
<td>5'-CAGCCCCTGGAAAACTCA-3'</td>
<td>This study</td>
</tr>
<tr>
<td>ARG4.R</td>
<td>5'-TCCGCTTCCCTGACAGTCT-3'</td>
<td></td>
</tr>
<tr>
<td>ARG4 probe</td>
<td>6-FAM-CCAGACCAATGTCCTGAC-MGBNFQ</td>
<td></td>
</tr>
<tr>
<td>pyrG.F</td>
<td>5'-TGGCCGAGAGGCGATCT-3'</td>
<td>This study</td>
</tr>
<tr>
<td>pyrG.R</td>
<td>5'-CAGCAACTCTCTCTCAGGACAT-3'</td>
<td></td>
</tr>
<tr>
<td>pyrG probe</td>
<td>6-VIC-CGCAAGACTTCCC-MGBNFQ</td>
<td></td>
</tr>
<tr>
<td>arsC.F</td>
<td>5'-GCCCTGAGGTTCTTACTC-3'</td>
<td>This study</td>
</tr>
<tr>
<td>arsC.R</td>
<td>5'-CAGCGAGGAGCCAGCTACA-3'</td>
<td></td>
</tr>
<tr>
<td>arsC probe</td>
<td>6-FAM-CCTCGCAGGATG-MGBNFQ</td>
<td></td>
</tr>
<tr>
<td>Chr1arsC.F</td>
<td>5'-GACCTCGACCTAAGAGC-3'</td>
<td>This study</td>
</tr>
<tr>
<td>Chr1arsC.R</td>
<td>5'-TCAATTAGAGAGGCCGAG-3'</td>
<td></td>
</tr>
<tr>
<td>Chr5arsC.F</td>
<td>5'-TCTTTCTCTTCCGCTTA-3'</td>
<td></td>
</tr>
<tr>
<td>Chr5arsC.R</td>
<td>5'-GAGCTGGACGCTCAGTACG-3'</td>
<td></td>
</tr>
</tbody>
</table>

1 MGB probe dyes are incorporated into the primer sequences, i.e., 6-FAM-AGCCAGGCGCAATT-MGBNFQ is an MGB probe labeled with FAM.
2 AFKS primers and probes were used for detection of the FKS1 gene. ARG4, pyrG and arsC primers and probes were used for detection of ARG4, pyrG and arsC genes.
3 Primers designated Chr1arsC or Chr5arsC are for routine PCR amplification of the two arsC alleles from chromosome 1 or 5.
Table 3. Confirmation of copy number of predicted single copy genes.

<table>
<thead>
<tr>
<th>Strain</th>
<th>FKS1 Avg Ct<sup>a</sup></th>
<th>FKS1 copy#</th>
<th>pyrG Avg Ct</th>
<th>pyrG copy#</th>
<th>ARG4 Avg Ct</th>
<th>ARG4 copy#</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF293</td>
<td>19.16 +/- .012<sup>b</sup></td>
<td>1</td>
<td>19.33 +/- .005</td>
<td>1.13</td>
<td>19.06 +/- .008</td>
<td>1.07</td>
</tr>
<tr>
<td>WSA-172</td>
<td>21.39 +/- .012</td>
<td>1</td>
<td>21.34 +/- .001</td>
<td>0.97</td>
<td>21.23 +/- .007</td>
<td>1.11</td>
</tr>
<tr>
<td>WSA-445</td>
<td>22.26 +/- .049</td>
<td>1</td>
<td>22.55 +/- .003</td>
<td>1.22</td>
<td>22.31 +/- .004</td>
<td>0.97</td>
</tr>
<tr>
<td>WSA-621</td>
<td>24.34 +/- .014</td>
<td>1</td>
<td>23.52 +/- .004</td>
<td>1.29</td>
<td>24.54 +/- .007</td>
<td>1.10</td>
</tr>
<tr>
<td>WSA-419</td>
<td>21.40 +/- .050</td>
<td>1</td>
<td>21.82 +/- .003</td>
<td>1.34</td>
<td>21.40 +/- .005</td>
<td>1.00</td>
</tr>
</tbody>
</table>

^aThreshold cycle
^bMean +/- standard deviations.
N= 3 samples, run in duplicate. Copy # of test gene (pyrG or ARG4) = 2^-ΔCt
Table 4. Determination of arsC copy number by qRT-PCR, FKS1 vs arsC, all isolates.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Avg Ct FKS1a</th>
<th>FKS1 Copy#</th>
<th>Avg Ct arsC</th>
<th>arsC copyb</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF293</td>
<td>22.1 +/- .107</td>
<td>1</td>
<td>21.1 +/- .007</td>
<td>2 (2.00)</td>
</tr>
<tr>
<td>WSA-172</td>
<td>19.8 +/- .010</td>
<td>1</td>
<td>18.7 +/- .004</td>
<td>2 (2.14)</td>
</tr>
<tr>
<td>WSA-446</td>
<td>22.0 +/- .052</td>
<td>1</td>
<td>21.1 +/- .003</td>
<td>2 (1.89)</td>
</tr>
<tr>
<td>WSA-445</td>
<td>19.8 +/- .014</td>
<td>1</td>
<td>18.7 +/- .005</td>
<td>2 (2.16)</td>
</tr>
<tr>
<td>WSA-271</td>
<td>22.1 +/- .025</td>
<td>1</td>
<td>21.0 +/- .002</td>
<td>2 (2.07)</td>
</tr>
<tr>
<td>WSA-270</td>
<td>19.2 +/- .042</td>
<td>1</td>
<td>18.2 +/- .002</td>
<td>2 (2.00)</td>
</tr>
<tr>
<td>WSA-621</td>
<td>19.9 +/- .060</td>
<td>1</td>
<td>18.8 +/- .003</td>
<td>2 (2.01)</td>
</tr>
<tr>
<td>WSA-419</td>
<td>23.1 +/- .014</td>
<td>1</td>
<td>21.9 +/- .007</td>
<td>2 (2.42)</td>
</tr>
</tbody>
</table>

aMean +/- standard deviations.

barsC copy # was determined using the formula $2^{\Delta Ct}$. Results shown in parentheses, which were then rounded to whole numbers.

N= 3 samples run in duplicate.
Table 5. *A. fumigatus* 18s rDNA copy number determinations.

<table>
<thead>
<tr>
<th>Strain</th>
<th>18s rDNA copies<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>AF293</td>
<td>38 +/- 0.01</td>
</tr>
<tr>
<td>WSA-172</td>
<td>46 +/- 0.03</td>
</tr>
<tr>
<td>WSA-446</td>
<td>47 +/- 0.01</td>
</tr>
<tr>
<td>WSA-445</td>
<td>49 +/- 0.06</td>
</tr>
<tr>
<td>WSA-271</td>
<td>49 +/- 0.05</td>
</tr>
<tr>
<td>WSA-270</td>
<td>53 +/- 0.01</td>
</tr>
<tr>
<td>WSA-621</td>
<td>70 +/- 0.03</td>
</tr>
<tr>
<td>WSA-419</td>
<td>91 +/- 0.03</td>
</tr>
</tbody>
</table>

^aMean +/- standard deviations.
N= 3 samples run in duplicate.
Table 6. *A. fumigatus* 18S rDNA copy number stability.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Subgroup</th>
<th>18s rDNA Copies<sup>a</sup></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>Conidia</td>
<td>38.02 ± 0.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyphae</td>
<td>38.11 ± 0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Temperature</td>
<td>30°C Growth</td>
<td>37.84 ± 0.044</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45°C Growth</td>
<td>38.03 ± 0.015</td>
<td>0.03</td>
</tr>
<tr>
<td>Culture Age</td>
<td>3d Growth</td>
<td>38.041 ± 0.024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d Growth</td>
<td>37.906 ± 0.059</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10d Growth</td>
<td>38.321 ± 0.019</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>25d Growth</td>
<td>38.061 ± 0.017</td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>0.00 µg/ml</td>
<td>37.984 ± 0.049</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.03 µg/ml</td>
<td>38.024 ± 0.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06 µg/ml</td>
<td>38.039 ± 0.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.125 µg/ml</td>
<td>38.033 ± 0.012</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>0.25 µg/ml</td>
<td>38.001 ± 0.055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 µg/ml</td>
<td>38.046 ± 0.009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 µg/ml</td>
<td>38.039 ± 0.019</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 µg/ml</td>
<td>38.034 ± 0.038</td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>Lung</td>
<td>38.056 ± 0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>38.136 ± 0.008</td>
<td>0.13</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>Lung</td>
<td>38.231 ± 0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney</td>
<td>37.688 ± 0.059</td>
<td>0.13</td>
</tr>
</tbody>
</table>

^aMean ±/ standard deviations.