Abstract—The design, fabrication, and testing of a resonant cantilever beam in complementary metal–oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-μm, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethyl methylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m³. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.

Index Terms—Cantilever beam, complementary metal–oxide semiconductor (CMOS) technology, electrostatic actuation, gas sensor, nerve agent.

I. INTRODUCTION

In order to allow widespread monitoring capacity, an inexpensive and small sensing approach to detection is needed. Using a micromachined sensor or system is a possible solution to this need and provided the motivation for this work.

There is an acute need for highly sensitive, accurate, and rapid detection techniques for chemical agents, toxic industrial chemicals, and explosives. The onset of clinical responses after exposure to hazardous chemicals is often rapid, so it is desirable to have a large number of detectors covering wide geographical areas, or for the individual to wear the detector as an unobtrusive pager like device. For cost and size issues, it is attractive to consider the use of micromachined technologies which offer the capability for on chip electronics to lower costs and provide high production yields.

A chemical sensor is a device, which converts chemical information into an analytically useful signal [1]. Chemical sensors are important for a variety of industrial and environmental applications, including the detection of hazardous chemicals, quality control in the food, perfume, and beverage industries, and medical applications [2].

A typical configuration for a chemical sensor includes a sorbent layer deposited on an active area of a transducer [3]. The interaction of a gas and the sorptive layer is monitored as a function of a physical change in the coating, and transduced into an electrical signal for ease of recording or display. For active gas sampling, pneumatic connections and a gas pump are normally required to make air flow over the chemical sensor. Conventional chemical sensors utilize transducers which are relatively large and have millimeter sized dimensions [4]. The advent and maturation of microelectromechanical systems (MEMS) technology now offers many opportunities to dramatically reduce the size, cost, and power consumption of chemical sensors [5]–[10]. Current state-of-the-art chemical detectors are typically hand held systems.

II. SENSOR TECHNOLOGY AND DESCRIPTION

A. Principles of the Microcantilever Beam Gas Sensor

A cantilever beam chemical sensor consists of two key components: a gas sorptive layer, such as a polymer, and the cantilever beam transducer. Two modes of operation of the cantilever beam can be distinguished [10]. In the static mode, the bending of the cantilever beam upon mass loading and related surface stress is measured. In the dynamic mode, the cantilever beam can be actuated at its fundamental resonant frequency. The fundamental resonant frequency in turn depends on the mass loading of the cantilever beam.

The beam structures fabricated in this work were designed with a range dimensions to explore the effect of device shape on resonant frequency, and mass sensitivity. Six different designs were included in a single chip. Short, wide, and thick cantilever beams are preferred for higher resonant frequencies, and large surface structures which maximize the area for polymer coating and subsequent gas sorption. In this regard, the length (L) and...
Electrostatically Actuated Resonant Microcantilever Beam in CMOS Technology for the Detection of Chemical Weapons

Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, PA, 15213-3890

Approved for public release; distribution unlimited

Security Classification of:
- a. Report: unclassified
- b. Abstract: unclassified
- c. This page: unclassified

Limitation of Abstract: Same as Report (SAR)

Number of Pages: 7
the width (\(W\)) of the cantilever beam are varied in order to determine the optimal dimensions for these structures; see Fig. 1. \(I_1\) is varied between 130 and 300 \(\mu m\), and \(W\) is varied from 60 to 150 \(\mu m\).

A thin layer of sorptive polymer is coated on the beam plate surface. This results in a frequency shift of the device to a new signal baseline. In the absence of actual polymer thickness measurements, it is typical to quote the amount of polymer coated as a frequency shift. The uptake of different gases is monitored as an additional shift in the device frequency, which is reversible if the gas-polymer chemical interactions are reversible. The cantilever beam gas sensor acts as a resonating microbalance, with mass increases normally leading to a decrease in the cantilever beam resonant frequency.

The amount of gas mass sorbed to the cantilever beam can be determined from the frequency shift of the cantilever beam, and if a calibration curve has been developed, the concentration of the gas in the air can be computed.

The natural frequency of a simple undamped rectangular cantilever beam is defined as [11]

\[
f = \frac{3.51}{2\pi} \sqrt{\frac{EI}{mL^3}}
\]

where \(E\), \(I\), \(m\), and \(L\) are the Young’s modulus, the moment of inertia about the neutral axis, the mass per unit length, and the length of the cantilever beam, respectively.

The natural frequency for the free undamped vibration of a composite cantilever beam can be expressed by replacing the bending stiffness \((EI)\) and mass per unit length \((m)\) terms from (1) with composite bending stiffness and composite mass per unit length. The resonant frequency for a composite cantilever beam is given by (2)

\[
f = \frac{3.51}{2\pi} \sqrt{\frac{\sum_{i=1}^{N} \frac{E_i I_i}{L^4} \sum_{i=1}^{N} m_i}{L}}
\]

where \(N\) is the number of layers of the composite cantilever beam, \(E_i\), \(I_i\), and \(m_i\) are the effective Young’s modulus, the moment of inertia and the mass per unit length, of each layer, respectively [12]–[15].

For a microcantilever beam, and a uniformly deposited mass, the gravimetric change \(\Delta m\) can be estimated with (3) [16]

\[
\Delta m \approx \frac{k}{f_1 f_2} \left(\frac{1}{f_1^2} - \frac{1}{f_2^2} \right)
\]

where \(f_1\) and \(f_2\) are the resonant frequencies of the cantilever beam after and before absorption and \(k\) is the spring constant.

The spring constant \(k\) for a composite cantilever beam with a uniform cross section is given by [13]

\[
k = \frac{3\sum_{i=1}^{N} E_i I_i}{L^3}
\]

\(E_i\) and \(I_i\) denoting the effective Young’s modulus and the moment of inertia of the individual layers of the beam, respectively. The amount of gas sorbed in the polymer depends on the specific gas-polymer interaction(s), the amount of polymer, and the gas concentration in the environment [3]. At a molecular level, the gas diffuses in and out of the polymer film, and the concentration in the polymer rises until a dynamic equilibrium is reached. For gases that are strongly bound to the polymer, desorption can be facilitated by the operation of a heater. In a cantilever beam’s array format with each beam coated with a different polymer, the pattern of responses or fingerprint that results from a gas exposure can be used to identify the gas.

A diagram of the cantilever beam, which is employed in this work, is shown in Fig. 2. Electrostatic actuation is used to drive the cantilever beam in a resonant mode. The resonant frequency is measured by a set of piezoresistors connected in a Wheatstone bridge configuration. Only the beam tip is coated with the thin layer of sorbent polymer.

B. Design and Fabrication of Complementary Metal–Oxide Semiconductor (CMOS) Cantilever Beam Gas Sensor Chip

CMOS technology is the most common fabrication technology for integrated circuits. Its combination with post-process micromachining allows for integration of sensors and circuitry on the same chip. Micro structures integrated with CMOS are commonly made from multilayers of silicon oxide, silicon nitride, polysilicon, and aluminum thin films.

The chip was designed in the Carnegie Mellon University (CMU) CMOS-MEMS technology using MEMC X-PLorer software installed under Cadence. Typical die size for this process is 2.5\(\times\)2.5 mm. The foundry used in the work is based on the Austrian Microsystems (AMS) process (0.6 \(\mu m\), three-metal, double-poly CMOS). The standard CMOS-MEMS process is followed by two maskless dry etch steps to release the microstructures that are protected by the top-most metal layer. The RIE post-processing steps were performed at CMU [17]. In the chip layout, suitable gaps are included to permit the RIE post processing steps. An anisotropic reactive ion etch (RIE) with CHF\(_3\) and O\(_2\) is first used to remove the silicon oxide not covered by any of the aluminum metal layers. This step is followed by an isotropic RIE process using SF\(_6\) and O\(_2\) to remove the underlying silicon, and release the microstructure.
The key to the CMU CMOS-MEMS process is in the use of metallization as an etch-resistant mask to define the microstructures. The CMU CMOS-MEMS process has been described previously in detail [18].

The microstructural layers can be designed with any of the three metal layers as the etch mask, with their thickness being a function of the number of metal masking layers. In most surface micro-machined technologies, the design control is limited to two planar dimensions of a mechanical structure. An advantage of the CMU CMOS technology is based on the availability of up to three metal layers, which offers the design flexibility in a third dimension. Using different combinations of the three metal layers, different beam thicknesses can be fabricated. In this work, the metal layer combinations of M1 and M3 were used to generate devices with a thickness of 4.2 µm [19].

The post-processed structures fabricated using CMU CMOS-MEMS technology with the AMS CMOS process have the drawback that they typically exhibit bending after release. The CMOS metal and dielectric layers, which form the laminated structures, have different coefficients of thermal expansion, which result in the bending of the released structures [20]. However, the cantilever beam is electrostatically actuated perpendicular to the bending of the beam structures, so the device bending is not a negative design issue for this application.

Six different designs of chemical sensors were included in a single test chip. An example cantilever beam, number 6, is shown in Fig. 3.

The cantilever beam is driven electrostatically, using the two sets of interdigitated fingers seen in Fig. 3. The fingers designed on the chip substrate, which are flat, are wired to the ground pad. The fingers, designed on opposite sides of the cantilever beam are tilted out of the device plane and are wired together to a single bond pad, which is connected to an ac drive voltage superimposed on a dc voltage.

C. Design and Implementation of On-Chip Wheatstone Bridge

The resonant frequency is monitored with a highly symmetrical on-chip Wheatstone bridge arrangement. Each device on the fabricated chip includes a Wheatstone bridge arrangement, which are situated on neighboring short, auxiliary beams, as shown in Fig. 3.

Two resistors connected in series are provided for each reference resistor and positioned in the common-centroid arrangement to allow for improved resistance matching.

This particular Wheatstone bridge design used in this work positions all of the resistors on beams, so that on release, each resistor experiences the same changes in stress, and results in a similar degree of bending; see Fig. 3. This design allows the resistors to maintain their matched values before and after release. For the electrical characterization of the cantilever beam gas sensors, the applied voltage at the input of the Wheatstone bridge was set at 6 V. The offset voltage of the Wheatstone bridge, when the cantilever beam was not actuated was between 2 – 20 mV, depending on the cantilever beam design.

The resistance measurements were performed with a Summit 11651–6 Thermal Probe Station, with a Keithley 2400 source meter, using Cascade Microtech DCP 150R Precision DC probes.

III. SIMULATION AND MEASUREMENT OF THE CANTILEVER BEAM RESONANT FREQUENCIES

A. Finite-Element Simulation of the Cantilever Beams Resonant Frequencies

It is important to identify the true resonant mode of the cantilever beams for any experimental measurements. The resolution of the experimental measurements will be poor if the resonant frequencies are not known. Without this knowledge, a large bandwidth would be required, and resolution sacrificed. If approximate resonant frequencies are known, the measurements can be carried out with a smaller bandwidth around the estimated resonant frequency. Based on these considerations, a finite-element analysis using ANSYS (version 6.1) was employed to model the first four resonant frequency modes of all the six cantilever beams designed on the test chip [22].

The simulations were performed without a sorbent polymer coating. The cantilever beam is a multilayer structure fabricated from silicon oxide, silicon nitride, polysilicon, and aluminum thin films. In order to perform the modal simulation with ANSYS, the cantilever beam was modeled as a composite
beam. The mesh elements of all analyzed cantilever beams were made using tetrahedral elements (SOLID 92).

The material properties of the different thin-film composite, such as Young’s modulus and density, were taken as previously reported [13]. Squeeze-film damping was not included in the simulation because the beam structures are significantly bent, which reduces effects from air damping.

For cantilever beam 6, the ANSYS simulation of the resonant frequency is shown in Fig. 5, with the four lowest resonant modes. The corresponding cantilever beam SEM image is shown in Fig. 3. The resonant frequencies from the ANSYS simulations of the six cantilever beams fabricated on the chip are provided in Table I.

TABLE I

<table>
<thead>
<tr>
<th>Cantilever #</th>
<th>Simulation results [kHz]</th>
<th>Measured electrically [kHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>113.773</td>
<td>111.550</td>
</tr>
<tr>
<td>2</td>
<td>92.380</td>
<td>90.300</td>
</tr>
<tr>
<td>3</td>
<td>26.600</td>
<td>25.400</td>
</tr>
<tr>
<td>4</td>
<td>29.900</td>
<td>27.350</td>
</tr>
<tr>
<td>5</td>
<td>54.100</td>
<td>53.680</td>
</tr>
<tr>
<td>6</td>
<td>91.360</td>
<td>89.900</td>
</tr>
</tbody>
</table>

With a dc voltage of 23 V applied to the fingers of cantilever beam 6, the device is shown to deflect toward the support by 0.53 μm, which is large enough for the electrostatic actuation of the cantilever beam. The deflection results are illustrated in the interferometer image shown in Fig. 7.

The dc polarization voltage is applied between the electrodes fingers to create a surface charge and an ac voltage is superimposed to drive the device with a harmonic force. The dc voltage applied from an Agilent E3631A power supply to deflect the cantilever beams was 20 V, and an ac voltage of 4 Vp-p from a Hewlett Packard HP 3588A spectrum analyzer was required to drive the oscillation of the beam.

Two piezoresistors which are part of the Wheatstone bridge are integrated on each beam to monitor the cantilever beam deflections. The output signal from the Wheatstone bridge, which is not amplified, is applied at the input of the spectrum analyzer in order to determine the resonant frequency. At the resonant frequency, the Wheatstone bridge output signal was measured between 80 and 120 mV, depending on the dimensions of each cantilever beam, with the Wheatstone bridge biased at 6 V. The circuitry used to oscillate the cantilever beam is shown in Fig. 8. A simple voltage divider is constructed to superimpose the varying ac voltage on the constant dc voltage.

The resonant frequency simulations with ANSYS were useful to narrow the frequency range monitored by the spectrum analyzer. The resonant frequencies simulated with ANSYS and...
measured with the circuitry are in good agreement and are shown in Table I. The differences maybe in part explained by the absence of a complete simulation that would include the fingers and etch release holes.

IV. POLYMER AS ANALYTE SORPTIVE LAYER

The polymer used in this work is a functionalized polycarbosilane, HCSA2. This polymer has been previously described [23], [24] and is a rubbery material with full flowing properties at room temperature. The beam’s resonant frequency shift response resulting from analyte sorption increases with increasing thickness of the polymer layer. At equilibrium, the thicker the polymer layer will sorb more gas molecules, with a larger mass change to detect. There are limits to which the device can be practically coated with a polymer film, that relate to the degradation of the cantilever beam quality or Q factor, and slower kinetics with thicker polymer films. The lower Q values are related to an increase in signal noise, which degrades the resolution of the sensor.

The cantilever beam was coated with a dilute solution of polymer HCSA2 in Chloroform (0.03% w/w) with a piezo inkjet dispensing head. The dispersed drop is directed at the desired location on the beam plate by viewing the cantilever beam through a microscope during the coating process. It is important to avoid depositing excessive amounts of polymer on the interdigitated fingers which would prevent oscillation, see Fig. 9. Targeting the drop closer to the cantilever beam tip improves the Q value.

Cantilever beam 6 from the chip was coated with a single drop of polymer solution. The resonant frequency of the cantilever beam before coating was 89.9 kHz, as shown in Fig. 10.

The concentrations of polymer used were 0.03% w/w, and 0.1% w/w in chloroform. The inkjet nozzle had an internal diameter of 30 μm; however, the dispersed drop diameter is larger and estimated to be 35 μm. The cantilever beam plate coated with polymer had the dimensions 50 × 60 μm. To avoid any high-temperature process after polymer coating, the chip was wire bonded onto a Kyocera DIP 40 ceramic package in advance of the polymer coating deposition.

The cantilever beam frequency shift as a function of polymer amount or droplet concentration is shown in Fig. 11, which shows a linear relationship over the range tested. The deposition of the polymer leads to a decrease in resonant frequency, with a simultaneous decrease in the vibrational amplitude and a degradation in the device Q.

V. VAPOR TEST MEASUREMENTS AND RESULTS

The vapor used for cantilever beam testing was generated by bubbling dry N₂ (0.3 – 6 ml/min) through a thermostatted glass container maintained at 15 °C, and diluted from near saturation with a relatively large volume of purified air (100 – 2500 ml/min). The pneumatic tubing used for all gas wetted parts was PFA. The chip mounted in the Kyocera package was sealed by positioning a Combo Lid (Chelsea Technology) over the device package and sealing the peripheral edges by applying tape. The lid had been previously modified by drilling two holes. A single PFA inlet tube (i.d., 0.125”) was attached to one of the holes situated directly above the chip, so that airflow was perpendicular to the cantilever beam. The second hole allowed air and vapor to exhaust into the fume hood. The majority of the vapor test measurements were carried out with a constant flow rate (6 ml/min) through the neat DMMP,
was 0.1 mg/m³ or 20 ppb. At this concentration, the signal frequency shift recorded was 30 Hz, with an estimated signal noise level of 10 Hz.

These measurements were made at 0% RH, but the magnitude of the response to DMMP is not expected to change with increasing humidity, based on tests with the same polymer and a conventional SAW sensor [25]. However, the signal baseline is expected to shift with changing humidity and temperature. Possible solutions to this include signal compensation by actively monitoring the temperature and humidity and using look up tables to adjust the baseline. Alternatively a preconcentrator module can be added up stream of the sensor and if used in an optimum fashion the signal response from water can be isolated from analytes of interest [26].

ACKNOWLEDGMENT

The authors would like to thank J. Petrella from The George Washington University for his contribution to the circuit design used to drive the resonant beam and his assistance. They would also like to thank several people at Carnegie Mellon University, including Dr. T. Mukherjee for assistance with chip post processing, K. He for guidance with design software, and S. Bedair for providing technical assistance with the interferometric picture. Finally, they would also like to thank J. Stepnowski for assistance in device polymer coating and Dr. H. D. Wu for assistance with the probe station operation.

REFERENCES

M. Voiculescu received the Ph.D. degree in mechanical engineering from Politehnica University, Timisoara, Romania, in 1997, and the Ph.D. degree in mechanical engineering (with an emphasis in MEMS) from The George Washington University, Washington, DC, in 2005. She was an Assistant Professor for ten years at Politehnica University. She is currently a Research Associate at the Naval Research Laboratory, Washington, DC. Her research interests are in the area of MEMS design, fabrication, and testing.

Dr. Voiculescu received the 1993 AIME Electronic Materials Society Ross Tucker Award, the 1996 Carnegie Institute of Technology G. T. Ladd Award, and the 1996 NSF CAREER Award. Currently, she serves as a subject editor for the IEEE/ASME Journal of Microelectromechanical Systems.