Advances in Acquisition Project Management

CAPABILITIES FOCUSED ACQUISITION PROCESS

–Continued–

COL Ray Jones
Project Manager,
Modular Brigade Enhancements
Program Executive Office,
Ground Combat Systems
US Army

COL Ray Jones
Program Manager,
Airborne, Maritime, Fixed Site (AMF)
Joint Program Executive Office,
Joint Tactical Radio System
OSD
1. REPORT DATE
MAY 2008

2. REPORT TYPE

3. DATES COVERED
00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Advances in Acquisition Project Management Capabilities Focused Acquisition Process

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Program Executive Office, Ground Combat Systems, Warren, MI, 48397-5000

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
5th Annual Acquisition Research Symposium: Creating Synergy for Informed Change, May 14-15, 2008 in Monterey, CA

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
15

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Acquisition Objective

Today
Radio (Legacy)
Platform-Centric
Datalink-Centric

Tomorrow
System (Network)
Interoperable
Net-Centric

- Managed System
- Seamless Operation
- Open System Architecture
- Fully Interoperable
- Enterprise

Better Knowledge .. Better Planning .. Better Execution Better Results
Battle Cmd/Vehicle Integration
“A Teaming Effort Success Story”

Early 2000’s
- Fielded Battle Command

Late 1990’s
- Working Closely with PEO C3T to Integrate Battle Command

2004
- PEO GCS Supports the Planning of Spin Out (then termed Spiral Outs)
 - Combining Current Battle Command With FCS BC/SOSCOE, JTRS

Now
- Integrating SO1 LUT Configuration and prepping for Tests
- Building/Executing Spin Out Production Phase IMP/IMS

2005
- Leading the Synchronization With FCS & Leading the fielding of Spin Outs

Project Management Office, Modular Brigade Enhancements
- Established 19 Sep 05

Integrating *Battle Command Systems* in a manner that maximizes the use of BC information and minimizes impact to vehicle and crew

ABCs, FBCB2/BFT, SINCGARs, EPLRS Based Units
Supporting the Army Vision Require Synchronization Modernization WHY?

WHAT WORKED BEFORE..........

- Vehicle infrastructure has remained relatively constant since the last development/improvement program
- Requirements are evolving / expanding and requires integration of new capability
 - New/Updated CDDs/CPDs under development
 - Integrating new capability adding to already strained power, space, and weight claims
- Integrating more in current vehicle configuration impacts crew and vehicle capability

...DOESN’T NECESSARILY WORK NOW!

We are at the degradation point
Moore’s Law**
Doubling of the number of transistors on integrated circuits every 18 months.

Falling further behind increases obsolescence and the cost to catch up.

Obsolescence Breakpoint
Point where component is no longer available

** Computer industry technology "roadmaps" predict (as of 2001) that Moore's Law will continue for several chip generations.
Capabilities Management Challenge

Multiple, independent solutions increasing burden on the unit and impacting overall capability.

Fewer, well coordinated materiel solutions that are employed consistently across all systems & optimizing overall capability.
CF Needs to meet Future Force Required Capabilities

Sample Capability Difference Areas
Unmanned Systems
Networked Battle Command
Supportability/Reliability
Survivability
Lethality

Differences

Future Force Capabilities
HBCT
SBCT
Other BCT
Aviation
Fires Brigade
IBCT
Notional 1-n Gap Analysis
CASTFOREM provides SoSAT parameters associated with warfighting technology effectiveness
- e.g. probability of platform/subsystem mission survival, probability of mine detection

SoSAT provides CASTFOREM parameters associated with platform reliability and sustainment
- e.g. downtime due to (lack of) reliability failures
Integrated Analyses to Maximize Operational Effectiveness

SoSAT CLOE ...

CASTFOREM APS ...

JANUS -360 SA ...

GRIP Improved embedded training ...

1-N List Impacts

Optimization

Constraints -Budget -SWAP

Cost/Benefit

Rank Order Based on cost/benefit

Modernization Plan

Increases in Force Operating Capabilities With various BCT solution configurations

Sustainment
Survivability
Situation Awareness

1-N List Impacts

Evaluating Operational Effectiveness
PEO GCS SE Contracted Effort

- SE Contractor brought in to support execution of efforts like this

- Focus:
 - Supporting the execution of the common capability analysis
 - Developing for the PMs and PEO the SE processes

- Benefit:
 - They will get real-life experience with this effort and be able to develop better processes, determine tools and training needs
Ground Vehicle Analyses Process

1ST LEVEL Analyses

- Requirements (CDD, CPD, ONS, etc.)
- Capability Requirements Analysis (Capability Mapping)
 - Common capability requirement identified
- Possible common solutions
 - Vehicle Change Analysis
- Current Block Upgrade Needs

2ND LEVEL Detailed Analyses

- Available FCS Technologies
- Capability Search & Analysis
 - Candidates identified
- Other Available Technologies
 - (From Other PEOs, RDECOM, Commercial Sector)
- Cross-Vehicle Analysis
- Program Sys Eng Analysis
 - Common solutions possible
- Program and Lifecycle Cost Analyses of alternatives

3rd LEVEL Implement

- Capability Search & Analysis
- Candidates identified
- Program Sys Eng Analysis
 - Common solutions possible
- Program and Lifecycle Cost Analyses of alternatives
- More?
- Capability Down Select Decision(s)
- Optimal Solutions

- MS A
- MS B
- MS C
- FRD

Inputs
Process
Outputs
PEO GCS Modernization Tenets

Facing Common Upgrade Challenges

- **Exceeding Weight Limits**
- **Power Availability**
- **Capability Needs**
- **O&S Cost Increasing**

Opportunity for Common solutions

- Minimizing Development Costs
- Commonized Capability Across Fleets
- O&S Cost Benefits
- Increased quantities yielding procurement cost saving

Modernization Leveraging Arforgen

RESET & Train vs. **UPGRADE & Train**
SUMMARY
Making It All Happen: “A Broad Ground Vehicle View”

Example: Programs Must Be Aligned To Enable Battle Command

Requirements Alignment

Vehicle CDDs → BC CDDs

(Capability/Brigade-Level Requirements Documents)

Funding Alignment

BC Hardware Funded + BC Software Funded + Vehicle Integration Funded = Fielded Battle Command

Any one of these are not funded = Fielded Battle Command

Schedule Alignment

Vehicle Schedules → IMP/IMS → BC Schedules

SO1 Is Marching In This Direction

- SO1 CDD
- SO1 Production Phase IMP/IMS under development
- Funds Management Alignment

Battle Command Development and Battle Command Vehicle Integration: *Synchronization is the Key to Success*