Innovations in Defense Acquisition Auctions: Lessons Learned & Alternative Mechanism Designs

William R. Gates

Peter J. Coughlan
Innovations in Defense Acquisition Auctions: Lessons Learned & Alternative Mechanism Designs

Abstract

5th Annual Acquisition Research Symposium: Creating Synergy for Informed Change, May 14-15, 2008 in Monterey, CA

Subject Terms

unclassified

Security Classification of:

- **a. Report:** unclassified
- **b. Abstract:** unclassified
- **c. This Page:** unclassified

Limitation of ABSTRACT

Same as Report (SAR)

Number of Pages

27
Objectives

• How are auctions used in DoD acquisition?
 – Effective
 – Appropriate

• Suggest alternative auction structure
 – Iterated Information Aggregation Auction (I^2A^2) Mechanism
 – Quality of fit affects productivity of relationship

• Test current & alternative auction structure
Project Deliverables

• Electronic Reverse Auctions in the Federal Government
 – MBA Project Report, Whitney E. Brown and Lana D. Ray

• Improving the Efficiency of Defense Auctions: Multi-Stage Auctions as a Market Research Tool
 – MBA Project Report, Steven W. Vanden Bos

• Innovations in Defense Acquisition Auctions: Lessons Learned & Alternative Mechanism Designs
 – Technical Report, P. Coughlan, W. Gates and J. Lamping
Auctions as Exchange Mechanisms

- Single Seller
 - Forward Auction
 - Multiple Buyers
 - Negotiation
 - Single Buyer
 - Reverse Auction
 - Multiple Sellers
 - Market or Double Auction
Auction Characteristics

Forward
- Open / Sequential Bid
 - English
 - Dutch

Reverse
- Sealed / Simultaneous Bid
 - First Price
 - Second Price
Additional Auction Structures

• **Multiple–Item**
 - **Multiple–Price**
 - **Single Price**

• **Multi–Attribute**
 - **Participants Submit Multi–Dimensional Bids**

• **Combinatorial**
 - **Participants Submit Monetary Bids for Multi–Dimensional Items**

• **Hybrid**
 - **English/Second–Price (proxy bidding)**
DoD Auctions

- Auctions Consistent with FAR
- Auctions credited with significant savings
- Auctions used primarily as market research tool

Auctioned Items
- Commercial Items
 - Computer Software and Hardware
 - Office Supplies
 - Field Warfare Supplies (Tents, Batteries, Flashlights, Flak vests)
 - Trailers
 - Refrigerators and Dishwashers
 - Plasma Televisions

- Commercial services
 - Hotel Room and Conferencing Services
 - Copier Maintenance
 - Training
 - Services Related to Commodity Purchases (Installation Services)
Lessons Learned

Single Seller

Forward Auction

Single Buyer

Negotiation

Multiple Buyers

Reverse Auction

Market or Double Auction

Multiple Sellers
The Procurement Decision

• Any procurement decision involves several interdependent choices:
 1) **What** should be procured
 2) **How** it should be procured
 3) **From whom** it should be procured
 4) **At what price** it should be procured

• Economic analysis has generally ignored question #1
 – Either assumes buyer knows perfectly well what is needed …
 – Or assumes question better left to other research disciplines

• However, **auction theory** and **mechanism design** can greatly assist in determining **what** should be procured
 – We propose a procurement mechanism – answer to the **how** question – which endogenously answers other 3 questions
The Information Problem

• Determining *what* to procure is complicated by the fact that the relevant information is:
 – **Incomplete**: Neither the procuring organization nor any individual contractor possess all the relevant information
 – **Diffuse**: Relevant information is spread out among the procuring organization and all of its potential contractors
 – **Private**: Relevant information may be known by one or few contractors who have little incentive to truthfully reveal

• The economic field of **mechanism design** is devoted to developing systems which:
 – Create incentives for actors to **truthfully reveal** information
 – **Efficiently aggregate** diverse and often conflicting information
 – **Identify optimal choices** based on aggregated information
Stylized Procurement Problem

• True value of procured product/service depends on:
 – Performance along various measures \((M_1, M_2, M_3, \ldots)\)
 • Aircraft example: Speed, maneuverability, range, reliability, etc.
 – Relative importance/weighting of each measure \((\alpha_1, \alpha_2, \alpha_3, \ldots)\)
 • Information about appropriate weights incomplete, diffuse, and private
 \[\Rightarrow \text{Value} = \alpha_1 M_1 + \alpha_2 M_1 + \alpha_3 M_1 + \ldots - P\]

• Ex ante information (before bids or announcements):
 – DoD and contractors have some incomplete and independent information about optimal weighting of each performance measure
 • Precision of information reflected in number of “draws from an urn”
 • DoD may have more, less, or same precision as any contractor
 – Each contractor knows its own cost function
The Iterated Information Aggregation Auction (I²A²) Mechanism

1) Initial auction: Each contractor submits bid \((M_1, M_2, M_3, \ldots, P)\) based on own estimates of weights \((\alpha_1, \alpha_2, \alpha_3, \ldots)\)

2) Update: DoD updates its estimates of appropriate weights based on contractor bids and announces new estimates

3) Elimination: Contractors with least value initial bids (according to updated weights) are eliminated

4) Final auction: Each remaining contractor submits a new bid based on updated weights

5) Award: Winning contractor selected based on updated weights
1) **Publish** (optional): DoD publishes its own estimates of weights
2) **Auction**: Each contractor submits bid \((M_1, M_2, M_3, \ldots, P)\) based on own estimates and (perhaps) DoD estimates of weights
3) **Update** (optional): DoD updates its own estimates of weights based on contractor bids
4) **Award**: Winning contractor selected based on (possibly) updated weights

Two optional stages create four single auction variations:
- No Publish, No Update
- No Publish, Update
- Publish, No Update
- Publish, Update
Auction Scenarios

<table>
<thead>
<tr>
<th>DoD Info</th>
<th>Low</th>
<th>Low</th>
<th>High</th>
<th>High</th>
<th>Low</th>
<th>Low</th>
<th>High</th>
<th>High</th>
<th>High</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor Info</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Competition</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>DoD Draws</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Seller Draws</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>1st Round Sellers</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2nd Round Sellers</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
Auction Scenarios:
Draws Per Contractor Bid/DoD Selection

<table>
<thead>
<tr>
<th>DoD Info Contractor Info Competition</th>
<th>Low Low</th>
<th>Low Low</th>
<th>High Low</th>
<th>High Low</th>
<th>Low Low</th>
<th>Low High</th>
<th>Low High</th>
<th>High Low</th>
<th>High High</th>
<th>High Low</th>
<th>High High</th>
<th>High Low</th>
<th>High High</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Publish No Update</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Publish No Update</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>No Publish Update</td>
<td>5</td>
<td>25</td>
<td>5</td>
<td>35</td>
<td>5</td>
<td>65</td>
<td>15</td>
<td>65</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>Publish Update</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>35</td>
<td>20</td>
<td>65</td>
<td>20</td>
<td>65</td>
<td>20</td>
<td>15</td>
<td>30</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>I²A²</td>
<td>25</td>
<td>25</td>
<td>55</td>
<td>55</td>
<td>35</td>
<td>35</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>155</td>
<td>75</td>
<td>75</td>
<td>165</td>
</tr>
</tbody>
</table>

Note: The table above illustrates different auction scenarios based on DoD and contractor information, with draws per contractor bid/doD selection. Each row represents a scenario with varying degrees of information availability, and the numbers indicate the typical outcomes or values associated with each scenario.
Effects of Competition:
DoD Value as Percent of Perfect Information

![Bar Chart]

- DoD Info High
- Cont Info High
- Comp High
- DoD Info High
- Cont Info High
- Comp Low
- DoD Info Low
- Cont Info Low
- Comp High
- DoD Info Low
- Cont Info Low
- Comp Low

Percent of Optimal

- No Publish
- No Publish
- Publish
- Publish
- I2A2

Acquisition Research Program: Creating Synergy for Informed Change
Naval Postgraduate School
Monterey, CA
Sample Simulation Outcome:
DoD Value as Percent of Perfect Information

![Bar Chart]

- **DoD Info Low, Cont Info Low**: 37.2%
- **DoD Info Low, Cont Info High**: 62.8%
- **DoD Info High, Cont Info Low**: 76.9%
- **DoD Info High, Cont Info High**: 97.3%

The chart illustrates the percent of perfect information for different combinations of DoD and Cont information levels, with updates indicated by different colors.
Mean Simulation Results

![Graph showing the percent of perfect information for different conditions.]

- Publish: 91.7
- No Publish: 93.9
- No Update: 57.1
- Update: 85.6

Legend:
- Publish
- No Publish
- No Update
- Update
- I2A2
Selected Simulation Results

• Competition has bigger impact with low information
 – Models Second-Price auction w/truthful revelation
 – Competition likely more effective in first-price auction
• Significant benefit from info pooling w/low DoD info
• Two stage auction captures ~90–100% of optimal DoD value in all scenarios
 – Primary benefit related to systematic info pooling
 – DoD captures ~30–80% of optimal value without info pooling
• Two stage auction reduces chance DoD picks sub-optimal contractor
Conclusions

• Auction theory and mechanism design have a lot to offer for defense procurement
 – Provide a cost-effective and efficient procurement process
 – Truthfully illicit and aggregate diffuse, private information

• Procurement mechanisms can be designed that:
 – Create incentives for actors to truthfully reveal information
 – Efficiently aggregate diverse and often conflicting information
 – Identify optimal choices based on aggregated information

• Updating requirements and evaluation criteria significantly increases DoD’s value
 – Carefully designing how we procure can help determine what to procure, from whom and at what price
Issues For Further Research

- Single Buyer
- Single Seller
- Negotiation
- Multiple Buyers
- Forward Auction
- Reverse Auction
- Multiple Sellers
- Double Auction
- Market or
Backup Slides
Electronic Reverse Auctions in DoD

• Consistent with FAR and DFARS
 • FAR Part 1.102 (d)
 • FAR Part 4.502 (a)

• Buy American Act

• Procurement Integrity Act
 • FAR 15.306(e)(3)

• Socioeconomic Concerns
 – Small and Disadvantaged Businesses
 • FAR 19
 • FAR 19.5
 • FAR 13

• Vendor Concerns
Federal Reverse Auctions: Estimated Savings

<table>
<thead>
<tr>
<th>Government Agency</th>
<th>Number of Awards</th>
<th>Independent Government Estimate</th>
<th>Final Award Price</th>
<th>NET Savings in Dollars</th>
<th>NET Savings in Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL GOVERNMENT</td>
<td>18,401</td>
<td>$1,187,932,046</td>
<td>$1,037,440,499</td>
<td>$150,491,548</td>
<td>12.7%</td>
</tr>
<tr>
<td>DEPARTMENT OF DEFENSE</td>
<td>5,932</td>
<td>$351,179,597</td>
<td>$320,444,507</td>
<td>$30,735,089</td>
<td>8.8%</td>
</tr>
<tr>
<td>Department of the Army</td>
<td>3,101</td>
<td>$146,222,796</td>
<td>$132,698,678</td>
<td>$13,524,119</td>
<td>9.2%</td>
</tr>
<tr>
<td>Department of the Air Force</td>
<td>316</td>
<td>$58,553,765</td>
<td>$53,909,867</td>
<td>$4,643,898</td>
<td>7.9%</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>1,710</td>
<td>$70,127,231</td>
<td>$63,805,400</td>
<td>$6,321,831</td>
<td>9.0%</td>
</tr>
<tr>
<td>Other DoD Agencies</td>
<td>805</td>
<td>$76,275,804</td>
<td>$70,030,563</td>
<td>$6,245,241</td>
<td>8.2%</td>
</tr>
<tr>
<td>USAAVEAuctions (2000-2007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CECOM</td>
<td>188</td>
<td>$153,865,877</td>
<td>$105,214,195</td>
<td>$48,651,682</td>
<td>31.62%</td>
</tr>
</tbody>
</table>

(After: Brown and Ray, 2007)
Federal Reverse Auctions: Competition

FedBid Results FY2002 – FY2007

<table>
<thead>
<tr>
<th>Government Agency</th>
<th>Number of Awards</th>
<th>Ave # of Sellers Bidding</th>
<th>Ave # of Bids per Auction</th>
<th>Ave # of “No bids” per Auction</th>
<th>Ave. No. of Sellers Notified</th>
<th>Ave. Savings in Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL GOVERNMENT</td>
<td>18,401</td>
<td>5.9</td>
<td>13.6</td>
<td>44.6</td>
<td>836.5</td>
<td>$8,178.44</td>
</tr>
<tr>
<td>Department of Defense</td>
<td>5,932</td>
<td>4.7</td>
<td>10.2</td>
<td>55.7</td>
<td>1,012.9</td>
<td>$5,181.24</td>
</tr>
<tr>
<td>Department of the Army</td>
<td>3,101</td>
<td>4.1</td>
<td>8.9</td>
<td>59.6</td>
<td>1048.2</td>
<td>$4,361.21</td>
</tr>
<tr>
<td>Department of Air Force</td>
<td>316</td>
<td>3.7</td>
<td>8.7</td>
<td>58.8</td>
<td>1027.7</td>
<td>$14,695.88</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>1,710</td>
<td>5.7</td>
<td>11.9</td>
<td>48.3</td>
<td>971.5</td>
<td>$3,696.98</td>
</tr>
<tr>
<td>Other DoD Agencies</td>
<td>805</td>
<td>4.8</td>
<td>12.1</td>
<td>55</td>
<td>958.8</td>
<td>$7,758.06</td>
</tr>
<tr>
<td>Auction</td>
<td>Strategy</td>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>Bid Up to True Value</td>
<td>Highest Bidder Wins at 2nd Price</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>Trade-Off Between Risk and Return</td>
<td>Guess 2nd Price No Bid Above Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-Price Sealed-Bid</td>
<td>Trade-Off Between Risk and Return</td>
<td>Guess 2nd Price No Bid Above Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second-Price Sealed-Bid</td>
<td>Bid True Value</td>
<td>Highest Bidder Wins at 2nd Price</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Binomial Distribution

- Binomial Distribution
 - Actual probability = .6
 - 68% of random observations within one standard deviation from the mean
 - Draws as specified

<table>
<thead>
<tr>
<th>Draws</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 STD</td>
<td>±.220</td>
<td>±.155</td>
<td>±.109</td>
<td>±.077</td>
<td>±.055</td>
<td>±.039</td>
</tr>
<tr>
<td>+ 1 STD</td>
<td>.820</td>
<td>.755</td>
<td>.709</td>
<td>.677</td>
<td>.655</td>
<td>.639</td>
</tr>
<tr>
<td>-1 STD</td>
<td>.380</td>
<td>.445</td>
<td>.491</td>
<td>.523</td>
<td>.545</td>
<td>.561</td>
</tr>
</tbody>
</table>