Award Number: W81XWH-06-1-0324

TITLE: Development of Antibodies Against Novel Cell Surface Proteins in Hormone Refractory Prostate Cancer

PRINCIPAL INVESTIGATOR: Zev A. Wainberg, MD

CONTRACTING ORGANIZATION: University of California, Los Angeles, 90095

REPORT DATE: July 2008

TYPE OF REPORT: Annual (second)

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:
Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Title: Development of Antibodies Against Novel Cell Surface Proteins in Hormone Refractory Prostate Cancer

Author: Zev A. Wainberg

Abstract:

N-cadherin is a cell surface marker that is overexpressed in hormone refractory prostate cancer and targeting this protein either diagnostically or therapeutically may have clinical utility. We initially observed that the cadherin profiles of certain prostate cancer cell lines and xenografts correlated with their level of invasiveness. In addition, we saw that amongst certain hormone refractory xenograft models, there was a consistent upregulation of N-cadherin when compared to its androgen dependent counterpart. We generated specific monoclonal antibodies against different domains of N-cadherin in an attempt to determine if blockade could decrease invasion and metastasis. For the second year of the grant, there has been an increased focus on the in vitro and in vivo effects of two specific antibodies that were generated.

Subject Terms:

N-cadherin, preclinical mouse model, antibody therapy, antitumor activity, hormone refractory prostate cancer
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>sf298</td>
<td>2</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4-6</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Appendices</td>
<td>N/A</td>
</tr>
</tbody>
</table>
INTRODUCTION

The process known as Epithelial-Mesenchymal Transition (EMT) continues to be implicated as a crucial mediator of carcinogenesis. This phenomenon is manifested by “Cadherin Switching” in which Epithelial (E) Cadherin is lost and Neuronal (N) Cadherin is upregulated. In preliminary studies, we observed that the cadherin profiles of certain prostate cancer cell lines and xenografts correlated with their level of invasiveness. Preliminary evidence suggested that blocking the switch from E-Cadherin to N-Cadherin may block motility and invasiveness of prostate cells in vitro. We sought to validate N-Cadherin as a target for diagnostics or therapeutic purposes in hormone refractory prostate cancer and determine if blockade of this pathway could decrease invasion and metastasis. Previous studies have demonstrated that certain parts of the protein have unique activity and contribute in different ways to the various functions of N-cadherin. As a result, we generated two specific monoclonal antibodies against N-cadherin; one against the first extracellular domain and one against the 4th extracellular domain.

PROGRESS REPORT

Specific Aim 1. To validate N-cadherin as target for therapy.
Subaim1.3: Role of N-cadherin in prostate cancer:
We hypothesized that N-Cadherin may play a role in androgen independent and metastatic progression based on their known roles in other malignancies. In order to test these possibilities in prostate cancer, we generated constructs of N-cadherin and cloned them into CCR lentivirus vectors. Invasiveness of N-cadherin positive cells was assessed by Boyden chamber assays along with neutralizing the N-cadherin positive cells with our N-cadherin generated antibody. PC3 is highly invasive and expresses high N-cadherin levels. Invasion was decreased with antibody treatment.

Below, the left panel shows the in vivo growth curve for PC3 following tumor establishment. There is a clear difference between antibody treated animals versus control. Antibody treatment with 1H7 (directed against the first Extracellular domain) and EC4 (targeting the 4th ECD) was started on day 17, when tumors were palpable. Antibody was given twice weekly for two weeks. Animals were sacrificed when control tumors reached the maximum limits. The right panel shows control tumors being invasive, adherent, and angiogenic. The treated tumors were pale white, non-adherent and noninvasive. Staining of tumors is currently for N-cadherin and other related markers is currently ongoing.
Specific Aim 3. Preclinical testing

Subaim 3.1 Intact fully human antibodies for in vitro and in vivo pre-clinical testing
To study the involvement of N-cadherin, we looked at the effect of our antibodies against N-cadherin on tumor growth. LAPC9AI cells were injected into castrated mice and treated with N-cadherin antibody when tumors became palpable. There is a clear tumor growth inhibition. Tumors were harvested for histological and molecular analysis.

Subaim 3.2 In vivo testing of progression to androgen independence
LAPC9AD cells were injected into castrated mice along with an intact control. Antibody treatment began when tumors became palpable. Again, there is a growth inhibition in antibody treated tumors and the
tumors appeared to have similar morphology as the treated tumors described above. Tumors were excised for further analysis. This experiment is currently being repeated to confirm these provocative results.

KEY RESEARCH ACCOMPLISHMENTS
- Lab generated N-cadherin antibodies appear to have an effect on tumor growth both in vitro and in vivo, especially antibody containing only fourth extracellular domain.
- Gross tumor morphology gives a hint on the mechanism of N-cadherin antibodies as perhaps being related to anti-angiogenic mechanism.

REPORTABLE OUTCOMES
None

CONCLUSION

We have developed and several monoclonal anti-N-cadherin antibodies that have been validated both by immunohistochemistry (with positive and negative controls) as well as with invasion assays. We have demonstrated in several xenograft mouse models that N-cadherin-antibody treatment decreases the size and invasiveness of implanted tumors. Preliminary evidence has pointed to several possible mechanisms of action including inhibition of angiogenesis. Ongoing studies are being performed to determine if inhibition of N-cadherin can delay the development of androgen independence.

REFERENCES

