Award Number: W81XWH-05-1-0367

TITLE: Systemic oncolytic cytokine HSV therapy of prostate cancer

PRINCIPAL INVESTIGATOR: Brent J. Passer, Ph.D.

CONTRACTING ORGANIZATION: Massachusetts General Hospital
Boston, MA 02114-2554

REPORT DATE: May 2008

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The purpose of the present work is to evaluate the use of oncolytic HSV vectors (oHSV) and their cytokine-containing derivatives as potential therapeutic modalities in the transgenic TRAMP mouse, which recapitulates the developmental hallmarks in treating prostate cancer. We show that expression of interleukin 12 (IL-12) from NV1042 virus, a derivative of NV1023, was substantially effective at reducing the frequency of developing prostate cancer and lung metastases, even when the mice were treated after the onset of metastasis at 18 weeks of age. In October of 2007, we published this work in Cancer Research. Furthermore, we have extended these finding by using a novel complementary approach. Human prostate cancer tissues derived from radical prostatectomies were used in an organotypic culture system to further assess the efficacy of oncolytic HSV virotherapy. Our data shows that while \(G47\Delta \) specifically targets epithelial cells but not the surrounding stroma, wild-type HSV is promiscuous in that it also infects prostate stroma. Lastly, \(G47\Delta \) was shown to be more at least 10-fold more effective than \(G207 \), from which \(G47\Delta \) was made, in its ability to replicate in these cancer specimens.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Body</td>
<td>3</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>Appendices</td>
<td>9</td>
</tr>
</tbody>
</table>
INTRODUCTION

Oncolytic HSV-based vectors selectively replicate in tumor cells causing direct killing i.e., oncolysis, while at the same time sparing normal cells. To better assess the utility of oncolytic HSV vectors in treating prostate cancer, we have taken advantage of a transgenic mouse model system called TRAMP, which develops prostate cancer spontaneously and closely mirrors the progression of prostate cancer seen in humans. Overall, we have accomplished the majority of goals as outlined by the three specific aims of this grant. A manuscript entitled, “Systemic therapy of spontaneous prostate cancer in transgenic mice with oncolytic herpes simplex viruses” by Varghese et al. has been recently published in Cancer Research (see attached manuscript in appendices). Moreover, we have made significant strides in assessing the use of organotypic cultures derived from human prostate cancer specimens to study oncolytic HSV spread and replication.

BODY

Overall, we have demonstrated that:

1. Inbred TRAMP mice displayed a consistent and predictable temporal pattern of prostate cancer progression, i.e., low grade PIN (8 weeks) high grade PIN (10 weeks), prostate adenocarcinoma (12 weeks) and metastasis to the lungs (18 weeks). (Aim 1)
2. Systemic delivery of oncolytic NV1042 (expressing IL-12) replicates within prostate tumors as defined by β-gal staining and quantitative PCR of HSV gB sequence. (Aim 2)
3. Oncolytic NV1023 and to a greater extent NV1042 vectors delivered systemically at 12 weeks of age promoted robust regression of prostate tumor growth by 24 weeks of age. (Aim 2)
4. NV1042 also diminished prostate tumor size even when delivered by 18 weeks of age (period of metastasis). (Aim 3)
5. A significant reduction in the frequency of metastasis to the peri-aortic lymph nodes after administration of either NV1023 or NV1042 (Mock 86% as compared to NV1023 (14%) and NV1042 (25%). (Aim 3).
6. A tendency toward a reduction of metastasis to the lungs by NV1042 and NV1023 treatments. Although this was not statistically significant. (Aim 3).
7. NV1042 persistence within the tumor as defined by β-gal staining is different from senescence-associated β-gal activity, which can arise in prostate hyperplasia. (Aim 2).
8. NV1042 persistence within the tumor as defined by β-gal staining is different from senescence-associated β-gal activity, which can arise in prostate hyperplasia. (Aim 2).
9. Verifying by immunohistochemistry that anti-β-gal staining mirrored X-gal staining. (Aim 2).

Recently, we noted major inconsistencies in prostate tumor sizes in TRAMP mice in untreated mice at 24 weeks of age. This makes interpretation of treatment conditions difficult and we are currently trying to rectify this problem. While we believe that we have
made major strides in better characterizing the utility of oHSV for prostate cancer in this transgenic model system, the lack of consistent tumor size has hampered ongoing and future-planned studies. We have continued to breed these mice in order to obtain consistent tumor sizes. In addition, we will continue to seek the expertise of our collaborator Dr. Petur Nielsen, a MGH pathologist.

As discussed in last years progress report, we have also developed a novel complementary approach towards assessing the effectiveness of oncolytic HSV therapy in prostate cancer (not in the grant application but highly relevant). This experimental paradigm takes advantage of previously published work in which human prostate cancer biopsies can be easily maintained in vitro on a collagen sponge for 1-2 weeks (Nevalainen et al, 1993). The advantages of prostate tumor organ cultures are: (1) use of primary human prostate cancer biopsy material (as opposed to passaged prostate cancer cell cultures); (2) the three-dimensional structure remains intact (in contrast to typical monolayer cultures); (3) contains all the cell types present in the tumor; (4) contains 'normal' tissue/glands; (5) contains tumor foci at different stages of tumor progression; and (6) represents the genetic heterogeneity present within and between patients. Thus, factors that may affect viral entry and replication including cell-cell interactions and cell-matrix interactions remain preserved in this 3-dimensional milieu. Moreover, differences between prostate cancer cells, normal prostate gland cells, and interstitial cells can be explored. Human prostate cancer specimens are obtained from Surgical Pathology, immediately transported to the laboratory, cut into 2-4 mm³ pieces, incubated with oHSV, and placed on semi-submersed collagen sponges in media (with or without) compound, where they remain viable for over 7 days (Figure 1). Eight to twelve samples can be obtained from a single specimen so that each treatment group contains multiple individual fragments and different treatment groups from a single patient.

![Prostate organ culture](image)

Figure 1. Prostate organ culture. Side-view of a 6-well plate containing prostate tumor fragments placed on a collagen sponge after being incubated with oncolytic HSV.

As nectin-1 is one of the major entry receptors for HSV infection, we assess the tissue distribution of nectin-1 expression in these surgical specimens. IHC analysis clearly shows strong anti-nectin-1 staining on the epithelial cells in the prostate (Figure 2). These data suggest that oncolytic HSV's likely infects the prostate epithelium via nectin-1 receptors. Furthermore, we have compared tropism of G47Δ with that of the wild-type HSV strain F, from which G47d was derived in these prostate explants.
Figure 2. Human prostate cancer specimens express the HSV entry receptor nectin-1. Prostate specimens sections where either stained with a rabbit serum (Neg. Control) or the rabbit anti-nectin-1 antibody (R166; gift from Dr. Claude Krummenacher, Univ. of Pennsylvania). Thereafter, tissues were incubated with an anti-rabbit secondary antibody conjugated to horseradish peroxidase and followed by to reveal the expression of nectin-1. Note that the majority of nectin-1 staining appears located on the epithelial cells. (50x)

Analysis of prostate specimens infected with G47Δ at days 3 and 5 post-infection by either X-gal staining (ICP6 gene has been replaced by LacZ) or by immunostaining with anti-HSV glycoprotein C (gC) antibody shows that G47Δ specifically targets the epithelia of the prostatic ducts but spares the surrounding stroma. This was confirmed by immunostaining serial sections with cytokeratin 18, which specifically stains epithelial cells (Figure 3A). By d5, these ducts appeared extensively damaged presumably due to the oncolytic activity of G47Δ. While G47Δ appears restrictive in its pattern of infectivity and spread, ie.,prostate epithelial cells, anti-gC staining on tissues infected with wild-type strain F showed staining not only of epithelia but also the surrounding stroma (Figure 3B). This analysis demonstrates that wild-type HSV is promiscuous in nature to infect and spread in the in human prostate tissue.

Figure 3. Oncolytic G47Δ specifically targets the prostatic ducts of human prostate cancer biopsies. (A) Prostate cancer specimens were treated with G47Δ and day 3 and 5 post-infection, tissues were fixed and sectioned. Tissues sections were stained with X-gal (blue) or stained with the anti-HSV glycoprotein C (gC) antibody. In addition, serial
sections were immunostained with anti-cytokeratin18 (brown) to demarcate the prostate epithelial cells within the ducts and to demonstrate that G47Δ infection overlaps with cytokeratin 18-expressing cells. Tissues sections were also counterstained with hematoxylin. Note the cauterized-like appearance of the prostatic ducts at D5 and the lack of B-gal+ cells in the surrounding stroma. (B) Similar experiments were performed with wild-type Strain F and serial sections were stained with either anti-HSV gC (left and middle right panels) and anti-cytokeratin 18 (middle left and right panels). Note that HSV gC expression is also found in cyto18-negative areas.

Finally, we also compared the replication capacity of oncolytic G47Δ, G207 as well as wild-type strain F in these organ cultures (Figure 4). G47Δ is derived from G207 by a deletion within the nonessential α47 gene. Because of the overlapping transcripts encoding ICP47 and US11, the deletion in α47 also places the late US11 gene under control of the immediate-early α47 promoter. This alteration of US11 expression enhances the growth of γ34.5− mutants by precluding the shut off of protein synthesis (Todo et al., 2001). To this end, tissues were infected with one of the three viruses (1-2x10^6 pfu) and 5 days post-infection, tissues derived from these cancer specimens (n=6) were titered on Vero cells. This analysis shows that G47Δ was at least log_{10} more effective that G207. By contrast, strain F was more robust than either one of these vectors in its ability to replicate in these prostate tissues.

Figure 4. Oncolytic HSV’s replicates in prostate organ cultures. At 5 days post-infection, organ cultures were removed from the collagen-sponge, extensively homogenized and titered onto Vero cells. The vertical axis is in pfu/mg human prostate tissue. Each color dot indicates a different prostate surgical specimen which was separately infected with one of the three indicated viruses (n=6). Although viral input ranged from ~30,000-100,000 pfu/mg of prostate tissue, the actual infectivity by oHSV is likely to be much less.

KEY RESEARCH ACCOMPLISHMENTS

- Addressed key questions from all three specific aims.
- Manuscript to *Cancer Research* has been published
- Reported on a novel complementary approach towards addressing the effectiveness and specificity of oncolytic HSV vectors in prostate cancer.
REPORTABLE OUTCOMES

CONCLUSIONS

In conclusion, we demonstrated that systemic administration of oncolytic HSVs, in particular the IL-12 expressing NV1042 virus, is effective against primary prostate tumors as well as metastatic tumors independent of their location. These desirable therapeutic features of NV1042 render it a highly valuable agent either as a primary treatment option or as an adjuvant approach following surgery to eliminate micrometastases.

REFERENCES

APPENDICES

See accompanied manuscript
Systemic Therapy of Spontaneous Prostate Cancer in Transgenic Mice with Oncolytic Herpes Simplex Viruses

Susan Varghese,1,2 Samuel D. Rabkin,1,2 G. Petur Nielsen,3 Usha MacGarvey,1 Renbin Liu,1,2,3 and Robert L. Martuza1,2

1Department of Neurosurgery, Massachusetts General Hospital; 2Department of Surgery (Neurosurgery), Harvard Medical School; and 3Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts

Abstract
Oncolytic viruses are an innovative therapeutic strategy for cancer, wherein viral replication and cytotoxicity are selective for tumor cells. Here we show the efficacy of systemically administered oncolytic viruses for the treatment of spontaneously arising tumors, specifically the use of oncolytic herpes simplex viruses (HSV) administered i.v. to treat spontaneously developing primary and metastatic prostate cancer in the transgenic TRAMP mouse, which recapitulates human prostate cancer progression. Four administrations of systemically delivered NV1023 virus, an HSV-1/HSV-2 oncolytic recombinant, to TRAMP mice at 12 or 18 weeks of age (presence of prostate adenocarcinoma or metastatic disease, respectively) inhibited primary tumor growth and metastases to lymph nodes. Expression of interleukin 12 (IL-12) from NV1042 virus, a derivative of NV1023, was additionally effective, significantly reducing the frequency of development of prostate cancer and lung metastases, even when the mice were treated after the onset of metastasis at 18 weeks of age. NV1042-infected cells, as detected by 5-bromo-4-chloro-3-indolyl-D-galactopyranoside staining for Lac Z expressed by the virus, were present in prostate tumors 1 week after the final virus injection and viral DNA was detected at 2 weeks after final virus injection by real-time PCR in primary and metastatic tumors but not in liver or blood. No toxicity was observed in any of the treated mice. The efficacy of the IL-12-expressing NV1042 virus in this aggressive prostate cancer model using a clinically relevant treatment paradigm merits its consideration for clinical studies. [Cancer Res 2007;67(19):9371–9]

Introduction
Oncolytic viruses designed to differentially target cancer cells while sparing normal tissues have advanced in the past decade to the forefront of innovative strategies for cancer treatment (1, 2). Since the conception in 1991 of using mutated herpes simplex virus (HSV), a neurotropic virus, to treat brain tumors (3), the unique biology of HSV coupled with genetic manipulation techniques has greatly aided in the development of more potent HSV vectors while conferring safety and specificity (4). Currently, four oncolytic HSV vectors, G207, HSV 1716, NV1020, and OncovexGM-CSF, delivered intracerebrally, intraneoplastically, or intra-arterially, have successfully completed phase I clinical trials (4–6). These and other oncolytic HSVs have been efficacious in treating a variety of cancers in animal models (4, 7). In addition to their direct tumoricidal effect, oncolytic herpes viruses are also capable of eliciting an antitumor immune response (8–10), an important feature when treating metastatic tumors, especially those that are clinically occult.

Accumulating evidence suggests that oncolytic HSVs are potentially useful for treating prostate cancer: (a) G207, a multi-mutated herpes simplex virus-1 (HSV-1; ref. 11), is safe when administered into the prostate in preclinical animal models, and is a nerve-sparing virus (12, 13). This overcomes a current challenge of conventional treatments such as surgery and radiation therapy, which are associated with risks of nerve damage. (b) Oncolytic HSV mutants, including G207 and NV1020, have shown efficacy against human prostate cancer xenografts and mouse prostate cancers following intraneoplastic or i.v. administration (14–17). (c) G207 and other vectors are effective against human prostate cancer irrespective of hormone status or radiosensitivity (14, 16, 18)—a major advantage in its application for advanced forms of the disease in which hormone- and radiation-refractory tumor is an inevitable progression.

To date, however, all efficacy studies with HSV vectors for prostate cancer have used implanted tumor models, which are artificial systems with respect to their milieu and lymphovascular supply. Whereas these implanted models are easily amenable to therapeutic manipulation, they do not truly reflect the in situ cancer situation and may affect the outcome of the therapy being investigated. Genetically engineered mouse models that develop prostate cancer spontaneously are currently the most representative models to conduct efficacy studies. Therefore, we have used the transgenic TRAMP mouse, which develops prostate cancer spontaneously with progression to metastatic disease (19, 20). In TRAMP mice, the rat probasin promoter regulated by androgens drives SV40 T antigen expression, restricting its expression to epithelial cells of the prostate. Histologic progression of prostate cancer in TRAMP mice closely recapitulates that of humans, with the development of prostatic intraepithelial neoplasia (PIN) by 8 weeks of age, prostate carcinoma by 12 weeks, and metastatic cancer in periaortic lymph node and lungs by 18 weeks of age (20).

As a prelude to the studies in TRAMP mice, we examined the efficacy of G207, NV1023, and NV1042 against s.c. and metastatic lung tumors using the TRAMP-C2 prostate cancer cell line, which was established from a spontaneously occurring prostate adenocarcinoma of a TRAMP mouse (19). NV1023 is derived from NV1020, which has been in clinical trial for metastatic colon cancer and has greatly aided in the development of more potent HSV vectors (21, 22). NV1023 has an additional...
insertion of LacZ and deletion of ICp47, US11, and US10 genes (21). Comparison of efficacy in s.c. or metastatic lung TRAMP-C2 tumors showed that the murine interleukin 12 (IL-12)—expressing NV1042 virus was superior to its parent, NV1023, and G207 (17, 23). We also showed that IL-12 expression from NV1042 resulted in both immune and antiangiogenic effects (17, 23).

Based on the above findings, we investigated the utility of systemically administered NV1023 and NV1042 to treat spontaneously arising prostate cancer and metastasis in TRAMP mice. Results show that both NV1023 and NV1042 significantly inhibited the growth of primary tumors in prostate and metastasis in periaortic lymph nodes. NV1042 was additionally effective in reducing the frequency of the development of prostate carcinoma and lung metastasis.

Materials and Methods

Mice. TRAMP (C57Bl/6 background) breeder pairs (female TRAMP and male C57Bl/6) were purchased from The Jackson Laboratory and bred in-house at the Center for Comparative Medicine facility at Massachusetts General Hospital. Female transgenic F1 pups were crossed with male FVB/N mice obtained from National Cancer Institute to generate TRAMP mice on an FVB/N background. The pups were genotyped at 3 weeks of age using PCR to identify TRAMP mice. For comparison, histology of normal prostate from a nontransgenic littermate is shown. Systemic treatment with NV1023 or NV1042 decreased tumor growth and inhibition of the growth of tumors. Therefore, in this study using the spontaneous tumor model, four doses of 2 × 10⁷ pfu of NV1023 or NV1042, or virus buffer, were administered i.v. on days 0, 3, 7, and 10 to 12-week-old TRAMP mice (n = 8–9 per group). The results show a substantial inhibition of primary

Viruses. Purified virus stocks of NV1023 and NV1042 were obtained from Medigen, Inc. Construction of NV1023 and NV1042 has been previously described (21). NV1023, derived from NV1020 (R7020), is a HSV-1/HSV-2 hybrid recombinant developed as a vaccine strain (22), contains an insertion of LacZ into the ICp47 locus, deleting ICp47, US11, and US10 (21). NV1042 is NV1023 with an insertion of murine IL-12 cDNA (p35 and p40 as a single polypeptide separated by elastin motifs) expressed from a hybrid α4-TK promoter (21). The viruses were individually titered on Vero (African green monkey kidney) cells by plaque assay. NV1023-infected TRAMP-C2 cells secreted 52 ng/mL of IL-12 (17).

Virus treatment and efficacy evaluation. Twelve-week-old (n = 8–9 per group) or 18-week-old (n = 17 per group) male TRAMP mice were inoculated via tail vein with 2 × 10⁷ plaque-forming units (pfu) of NV1023 or NV1042 or virus buffer consisting of 10% glycerol in PBS (mock) in a virus biodistribution studies. TRAMP mice were treated with 2 × 10⁷ pfu of NV1042 on days 0, 3, 7, and 10. Mice were sacrificed at predetermined days and various tissues were evaluated for β-galactosidase by 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) staining and immunohistochemistry and for the presence of HSV-1 DNA by real-time PCR.

Statistical analysis. Statistical analyses were conducted by comparing NV1023- or NV1042-treated mice with mock or NV1023-treated with NV1042-treated mice group. Because the experimental data of prostate tumor weight from the efficacy studies did not follow a normal Gaussian distribution, nonparametric Mann-Whitney tests (two-tailed) were used to analyze significance between treatment groups. The frequency of carcinoma in prostate, periaortic lymph node, and lungs between treatment groups was conducted by contingency analysis using Fisher's exact two-sided test. Kaplan-Meier survival data were analyzed using log-rank test. α levels for all analyses were P < 0.05; n values and exact P values are indicated in the text and legends. All statistical analyses were done using GraphPad Prism v4.

Results

Spontaneous primary and metastatic prostate cancer development. Because the TRAMP mice were bred in-house, we determined the time line of prostate cancer and metastasis development before using them in viral therapy studies by analyzing 125 male transgenic TRAMP mice, and observed reproducibility with tumor development and progression. As illustrated in Fig. 1, TRAMP mice on the FVB/N background display PIN by 8 weeks of age, which progresses to carcinoma by 12 weeks and to metastases in periaortic lymph nodes and lung by 18 weeks of age. For comparison, histology of normal prostate from a nontransgenic littermate is shown. Systemic treatment with NV1023 or NV1042 was initiated at an age when mice first exhibit either primary prostate carcinoma (12 weeks) or metastasis (18 weeks). The mice were sacrificed at 24 weeks of age when untreated mice become moribund from disease.

Efficacy of systemic oncolytic HSV therapy on primary prostate cancer. Mouse cells are more resistant to HSV infection, and in our prior studies with implanted mouse prostate TRAMP-C2 cells in C57Bl/6 mice, we had noted that four intraneoplastic injections were significantly more effective than two treatments (17). Additionally, with TRAMP-C2 tumors metastatic to lung, we had observed that four i.v. administrations were significantly effective in inhibiting the growth of the tumors. Therefore, in this study using the spontaneous tumor model, four doses of 2 × 10⁷ pfu of NV1023 or NV1042, or virus buffer, were administered i.v. on days 0, 3, 7, and 10 to 12-week-old TRAMP mice (n = 8–9 per group). The results show a substantial inhibition of primary
prostate cancer growth in virus-treated mice when compared with mock mice as illustrated in the gross photograph (Fig. 2A). Because multifocal tumors also arise in the seminal vesicles of these mice and often coalesce with the prostate gland by sacrifice (24 weeks), the carcinomatous mass containing both prostate and seminal vesicles was excised as one unit and weighed. Distribution of prostate and seminal vesicle tumor weights (Fig. 2B) illustrates that mock-treated mice harbored tumors with a mean weight of 10.17 g, NV1023 with 3.98 g (P = 0.026, versus mock, Mann-Whitney test), and NV1042 with 2.79 g (P = 0.003, versus mock, Mann-Whitney test). For comparative purposes, the average weight of prostate and seminal vesicles from nontransgenic TRAMP mice is 0.78 g. In this experiment, two of nine mice from both the mock- and NV1023-treated groups died within 2 days of the 24-week sacrifice and one mouse from the NV1042 group died 1 week after treatment (at ~14 weeks of age). Histologic analysis of prostates from these dead mice showed that those from the mock and NV1023 treatment groups had large prostate tumors comprising of carcinoma, whereas the single NV1042-treated mouse did not display any evidence of cancer and therefore likely died from unrelated causes. H&E analysis of prostates showed consistent histologic grades among the treatment groups and included glands with normal histology, PIN, and invasive carcinoma of undifferentiated type. Whereas 8 of 9 (89%) mock mice had progressed to undifferentiated invasive carcinoma, only 6 of 9 (67%) NV1023-treated and 2 of 8 (25%) NV1042-treated mice (P = 0.015, versus mock, Fisher’s exact test) progressed to invasive carcinoma (Table 1). Correspondingly, PIN was the highest grade observed in the prostates of 3 of 9 (33%) NV0123-treated and 5 of 8 (63%) NV1042-treated mice, suggesting an inhibition of tumor progression in these treated mice. Thus, whereas both NV1023 and NV1042 were equally effective in inhibiting the growth of primary tumors (as assessed by tumor weight) when treated at 12 weeks, only NV1042 was effective in inhibiting tumor progression (as assessed by histologic grading) compared with mock or NV1023. Representative H&E-stained prostates, based on the most frequently observed histologic stage, from various treatment groups are illustrated in Fig. 2C. The largest tumors were highly necrotic (seen as pink areas in Fig. 2C, mock) with islands of tumor cells closely apposed to blood vessels within the necrotic areas.

Both NV1023 and NV1042 also inhibited primary prostate tumor growth as compared with mock treatment in mice treated at 18 weeks of age (n = 17 per group), when they begin to exhibit metastasis (Fig. 3A). There was a significant difference in the number of animals surviving to 24 weeks, with 8 of 17 mock dying or being sacrificed between 22 and 24 weeks due to tumor burden, as compared with 3 of 17 NV1023 and 2 of 17 NV1042 (P = 0.03, NV1042 versus mock, log-rank test). All of these mice harbored carcinoma within the prostate as determined by histologic analysis. Comparison of prostate and seminal vesicles weights in mice sacrificed at 24 weeks (Fig. 3B) shows a mean weight of 12.25 g in mock versus 6.54 g in NV1023 (P = 0.04 versus mock; Mann-Whitney test) and 3.66 g in NV1042 (P = 0.002, versus mock, Mann-Whitney test). Histologic analysis revealed that 16 of 17 (94%) mock mice, 13 of 17 (76%) of NV1023, and 10 of 17 (59%) of NV1042 (P = 0.039, versus mock, Fisher’s exact test) harbored invasive carcinoma, which were either well-differentiated adenocarcinoma or undifferentiated carcinoma (Table 1). Treatment at 18 weeks of age also resulted in inhibition of tumor progression within the prostate gland, with 35% of NV1042-treated mice displaying PIN as the highest grade without any advancement to carcinoma. Thus, when treated at 12 or 18 weeks, only NV1042 was effective in

Figure 1. Spontaneous primary and metastatic prostate cancer development in TRAMP mice. A normal prostate gland from a nontransgenic male littermate (left). Time line of primary prostate and metastatic cancer development in TRAMP mice starting at 8 wk of age when they develop PIN, progressing to invasive adenocarcinoma by 12 wk of age. Metastasis in periaortic lymph node and lung are observed by 18 wk of age.
inhibiting tumor growth within the prostate (as measured by prostate weight) and development of invasive carcinoma (as assessed by histologic grading).

Efficacy of systemic oncolytic HSV therapy on metastasis. Treatment of TRAMP mice with NV1023 or NV1042 at 12 weeks of age, when they begin to develop prostate carcinoma, resulted in a significant reduction of metastatic frequency in periaortic lymph nodes from 86% in mock-treated to 14% in NV1023-treated mice ($P = 0.03$, versus mock, Fisher’s exact test) and to 25% in NV1042 ($P = 0.04$, versus mock, Fisher’s exact test). Whereas there was a

<table>
<thead>
<tr>
<th>Site/histology</th>
<th>Treatment at 12 wk of age, n (%)</th>
<th>Treatment at 18 wk of age, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 7s + 2d)</td>
<td>(n = 8s)</td>
</tr>
<tr>
<td>Prostate—normal</td>
<td>1/8 (12.5)</td>
<td>1/17 (6)</td>
</tr>
<tr>
<td>Prostate—PIN</td>
<td>3/9 (33)</td>
<td>2/8 (25)*</td>
</tr>
<tr>
<td>Prostate—invasive carcinoma: well-differentiated adenocarcinoma</td>
<td>5/8 (63)</td>
<td>4/17 (24)</td>
</tr>
<tr>
<td>Prostate—invasive carcinoma: undifferentiated</td>
<td>1/17 (6)</td>
<td>6/17 (35)</td>
</tr>
<tr>
<td>Periaortic lymph node carcinoma</td>
<td>1/7 (14)*</td>
<td>16/17 (94)</td>
</tr>
<tr>
<td>Lung carcinoma</td>
<td>1/8 (12.5)</td>
<td>12/17 (71)</td>
</tr>
</tbody>
</table>

NOTE: NV1023 or NV1042 (2×10^7 pfu) or virus buffer (mock) was administered systemically on days 0, 3, 7, and 10 in TRAMP mice at either 12 or 18 wk of age. Mice were sacrificed at 24 wk and various tissues were processed for H&E staining and histologically graded. N values are shown in parentheses under each group (s, number of mice sacrificed at 24 wk of age; d, number of mice dead before 24 wk of age).

* $P < 0.05$, versus mock.

†Combined total of the two types of invasive carcinoma for statistical analysis.
significant amounts of staining were detected. Thus, systemic
observation in the lungs, liver, or brain, whereas in the prostate,
data not shown). However, by days 3 and 7, no staining was
seen in few isolated cells in the liver and lung and none in the brain (brain
histochemistry-positive cells were seen in the same region as
X-gal–staining cells). Figure 4 illustrate that viral DNA was detected until day 24 (last day
tested) in those organs that harbor primary and metastatic cancers
(prostate, periaortic lymph nodes, and lungs). In contrast, whereas
many viral copies were detected in the liver and blood on day 1, the
level decreased to nondetectable (negative) by day 24, suggesting
clearance of virally infected cells or degradation of viral DNA.
No viral DNA was detected in the brain of any animal on any day
tested.

Discussion
Prostate cancer in TRAMP mice arises from the targeted
expression of SV40 T antigen within the epithelial cells of the
prostate (19) and is influenced by the local prostate milieu. Studies
using TRAMP mice would therefore be expected to be superior to
implanted tumor models for a number of reasons: (a) Unlike
implanted tumors generated from cultured cells, which are usually
of a homogenous clonal phenotype, prostate tumors in TRAMP
mice arise multifocally and are heterogeneous in nature, similar to
the clinical situation. Such differences make treatment of these
multiclonal autochthonous TRAMP tumors more difficult as
opposed to implanted tumors. (b) Cells grown in vitro tend to
accumulate additional alterations distinct from the original tumor,
potentially influencing the outcome of therapies, thus affecting
clinical translation. In contrast, evaluation of autochthonous in situ
tumors would minimize such external influences. (c) In situ
prostate cancer development as observed in TRAMP mice is a
dynamic process between transformed cells and the surrounding
stroma and vasculature (29–31), whereas implanted tumors are in
an artificial environment with respect to stroma, vasculature, and
lymphatic supply, and therefore may respond to therapies more
effectively, especially when initiated at a short interval after
implantation when the tumor and local stromal cells have not
become responsive to one another.

The TRAMP mice used in this study were bred on a FVB/N
background. We also attempted to breed the TRAMP mice obtained from The Jackson Laboratory on a C57Bl/6 background,
but none of the 250+ F1 mice advanced from prostate adenoma to
carcinoma even at death, which varied from 40 to 52 weeks. This
lack of carcinoma development in the C57Bl/6 background is at
variance with the original report of TRAMP mice (20) but could be
attributed to genetic polymorphisms (32) or dietary and environ-
mental influences (33, 34). Nevertheless, when the F1 pups from the
C57Bl/6 background were crossed with the FVB/N background, the
pups from this cross simulated the time line of prostate cancer
progression reported previously (35). Even these TRAMP × FVB/N
pups exhibited variations in cancer development that differed from
previous reports: (a) a majority (~75%) of our mice survived only

administered NV1042 was able to persist at least for 7 days after
treatment in the cancerous prostates but not in the normal organs.
X-gal staining seen in hyperplastic glands on day 1 was distinct
from senescence-associated β-galactosidase (Fig. 4C) that has been
reported in prostate hyperplasia (27, 28). To further confirm that
X-gal histochemistry was identifying LacZ-expressing cells, immu-
nohistochemistry-positive cells were seen in the same region as
X-gal–staining cells (Fig. 4B).

Biodistribution of NV1042 in 18-week-old TRAMP mice treated
systemically on days 0, 3, 7, and 10 was assessed by real-time PCR
using HSV gB sequences. DNA was isolated from organs (prostate
and seminal vesicles, periaortic lymph nodes, lung, liver, brain,
and blood) harvested on days 11, 13, and 24. Results shown in
Fig. 5 illustrate that viral DNA was detected until day 24 (last day
tested) in those organs that harbor primary and metastatic cancers
(prostate, periaortic lymph nodes, and lungs). In contrast, whereas
many viral copies were detected in the liver and blood on day 1, the
level decreased to nondetectable (negative) by day 24, suggesting
clearance of virally infected cells or degradation of viral DNA.
No viral DNA was detected in the brain of any animal on any day
tested.

Figure 3. Efficacy of systemic oncolytic virus in TRAMP mice treated at 18 wk
of age. A, photograph of representative prostate and seminal vesicles
excised en bloc from various treatment groups illustrating prostate tumors.
B, distribution of weights of prostate and seminal vesicles from each treatment
group. Mean is denoted by the line in each group; mean weight ± SE for
each group are as follows: mock, 12.25 ± 2.3 g; NV1023, 6.54 ± 1.20 g
(P = 0.04, versus mock, Mann-Whitney test); NV1023, 3.66 ± 0.72 g (P = 0.002,
versus mock, Mann-Whitney test).
until 25 weeks as opposed to a previously reported range of 24 to 39 weeks (36); (b) none of the 80 mice more than 18 weeks of age displayed bone metastases (20), which may have been due to our inability to detect the occasional incidence of bone metastasis reported in these mice. We also observed some litter/cohoot variation, which included (a) the rate of penetrance of prostate carcinoma, with some cohorts displaying 100% penetrance whereas others showing less (90%), and (b) the survival rate of mice to 24 weeks (as described in the results), with 22% death in the 12-week-old treatment experiment and 47% in the 18-week-old treatment experiment. Such variations highlight the difficulty in conducting treatment studies with spontaneous tumor models, and in fact, most of the literature using TRAMP mice has focused on prevention as opposed to treatment studies (37).

Viruses were administered systemically in this study for several reasons: (a) Because we had chosen a regimen of four treatments with the viruses based on our prior studies (17), repeated laparatomies for virus delivery into the prostate would have greatly increased the risk of procedure-related toxicity. (b) Systemic administration would be the most effective method to reach various metastatic sites. (c) I.v. administration is much more amenable than a surgical procedure from a translational perspective. In this study, NV1042-infected cells were detected within prostatic tumors and viral DNA was detected in the cancerous prostates, periaortic lymph nodes, and lungs, suggesting that systemically administered virus reached and persisted in tumor-bearing organs but not in normal organs. Multiple injections of virus did not seem to be toxic, and tumor progression accounted for observed morbidity.

Both NV1023 and NV1042 treatment of TRAMP mice resulted in a significant reduction of primary prostate tumor weight irrespective of the age (12 or 18 weeks) at which treatment was

Figure 4. Biodistribution of NV1042 virus following i.v. injection of 12-week-old TRAMP mice. A, tissues harvested 1, 3, and 7 d after four viral injections were sectioned and stained with X-gal to detect LacZ expression from the virus. Top, sections from prostate, liver, and lungs obtained from mice sacrificed 1 d after treatments showing areas of staining in prostate glands with low-grade PIN and a few X-gal–positive cells in liver and lung (arrows); middle, tissues from 3 d after virus injections showing X-gal staining in prostate but not in liver; bottom, only prostate tissue stained at 7 d after virus injections. B, prostate tumor sections from a different mouse at 7 d after virus injections stained with X-gal (left) and anti-β-galactosidase antibody (right). Note the overlapping LacZ immunohistochemical and X-gal histochemical staining (open arrowheads) from nearby sections. C, senescence-associated β-galactosidase staining in mock-treated prostate tumors. Frozen prostate sections from a mock-injected TRAMP mouse at 12 wk (as in A) were histochemically stained at the same time for senescence-associated β-galactosidase (SA-β-gal, left) and X-gal (right). Cells staining blue are positive. Senescence-associated β-galactosidase was not detected in high-grade PIN or adenocarcinoma. In one mock-treated mouse, small clusters of positive-staining cells were seen in prostate tumors after X-gal histochemistry, likely due to endogenous activity (48).
initiated; however, only NV1042 was effective in inhibiting the progression from PIN to invasive prostate carcinoma. Both NV1023 and NV1042 also significantly inhibited the frequency of metastasis in periaortic lymph nodes independent of the age (12 or 18 weeks) at which treatment was initiated; however, again, only NV1042 but not NV1023 was significantly effective against metastasis in the lung when treated after the onset of metastasis at 18 weeks of age. Thus, whereas both NV1023 and NV1042 viruses were equally effective against primary tumor growth, only NV1042, and not NV1023, significantly inhibited the progression of primary and metastatic cancer compared with mock. This is an important outcome in determining which virus would be more effective for therapy because mortality in prostate cancer patients is associated with progression to metastatic disease.

We have previously compared the efficacies of NV1042 and NV1023 in s.c. and lung metastatic models using implanted TRAMP-C2 tumor cells and observed varying results, with NV1042 more efficacious in extending survival than NV1023 in the metastatic lung tumor compared with the s.c. model, although the s.c. tumors were directly injected. In the bilateral s.c. tumor model, NV1042 had only a minimal effect on noninoculated tumor growth (17) whereas in the metastatic lung model the enhanced efficacy of NV1042 over NV1023 was abrogated in athymic mice (23). NV1042 has previously been shown to be significantly better than NV1023 at inhibiting tumor growth in squamous cell, hepatic, and colorectal carcinomas (21, 38, 39). Augmented efficacy of IL-12 expression in other oncolytic HSV vectors has also been reported (40, 41).

NV1042 was significantly more effective than mock in the TRAMP mice in almost all of the outcomes measured, whereas NV1023 was only significantly better in less than half. Reasons for the absence of a more significant difference between NV1042 and NV1023 in this study as compared with prior studies (17, 18) include the following: (a) Nature of the tumor type: As compared with TRAMP-C2 tumors, the spontaneous TRAMP tumors are multifocal, independently arising in individual glands, and are heterogeneous masses that are continually progressing to more malignant phenotypes with time, along with associated changes in the microenvironment and immune phenotype. (b) Exposure of the tumor to IL-12: The in situ spontaneous prostate tumors are enclosed within a well-defined capsule, potentially limiting the diffusion of IL-12 expressed from NV1042 virus. (c) Less than optimal dosing of the virus: For this highly aggressive spontaneous model, it is possible that more frequent dosing may have increased the differential response between NV1023 and NV1042. (d) Timing of efficacy measurement: In the implanted tumor models, efficacy measurements were conducted within a period of 3 to 4 weeks after treatment as compared with 6 to 12 weeks after treatment in the spontaneous tumor model. Such variations in response to the same virus depending on the type of tumor model highlight the importance of evaluating oncolytic viruses in more than one model while emphasizing the need to use models such as the TRAMP mice that are most representative of in situ prostate cancer development and progression.

We believe that this is the first report of treating a spontaneous cancer model using systemically administered oncolytic HSVs. We recently reported the intraneoplastic use of oncolytic HSVs in the C3(1)/T-Ag model, which develops mammary tumors spontaneously (42). Although a direct comparison of NV1023 and NV1042 was not conducted, NV1042 significantly delayed mammary tumor progression as compared with mock. Data from both these studies substantiate the utility of NV1042 against spontaneous tumor models, whether administered intraneoplastically or i.v. An IL-12–expressing vector may have some advantages over a noncytokine vector: (a) IL-12 binds to receptors on T cells and natural killer (NK) cells, which enhances their proliferation and cytotoxicity, driving a T helper 1 response. It is a central immunoregulator acting as a bridge between innate and adaptive immunity (43) so that when expressed at the site of tumor antigen production, it can boost both arms of the immune response. (b) An IL-12–expressing oncolytic virus, which can both cause tumor destruction and deliver an immune-enhancing cytokine in the vicinity of tumor destruction, would be highly beneficial as compared with the direct administration of cytokines into the tumor without sufficient tumor antigens or “danger signals.” (c) IL-12 also has antiangiogenic properties (44).

Results from multiple studies previously conducted both by us and other investigators to identify the mode of action of NV0142 have also shown consistently without exception that the virus acts through immune and antiangiogenic mechanisms. T cells, specifically CD8+ cells, are essential to the antitumor immune response of the NV1042 virus (17, 23, 38, 45). The role of NK cells seems to vary with the tumor model used; in the metastatic prostate TRAMP-C2 lung tumor model, NK cell activity was observed in mice treated with NV1042 but not NV1023 or virus buffer, whereas in a colorectal micrometastatic model, NK cell depletion did not

Figure 5. Real-time PCR for HSV gB sequences in various tissues from TRAMP mice treated at 18 wk with oncolytic HSVs. NV1042 (2 × 10^6 pfu) was administered systemically on days 0, 3, 7, and 10 to TRAMP mice at 18 wk of age and various tissues were harvested on day 11 (n = 2), day 13 (n = 2), and day 24 (n = 3) for absolute quantification of gB viral sequences using TaqMan real-time PCR. Each column represents one mouse. The lymph node is the periaortic lymph node. *, nonquantifiable (1–15 copies). On day 24, there was a third mouse that only had nonquantifiable copies in prostate and periaortic lymph node (not shown in figure). For the second day 24 mouse, no DNA was obtained from the lung, including GAPDH.
interfere with NV1042 efficacy (23, 46). Finally, IL-12 expression by NV1042 virus leads to substantial antiangiogenic activity as shown in squamous cell carcinoma models (17, 47).

31. Parker JN, Gillespie GT, Love CE, Randall S, Whitley RJ, Marker JM. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental...