Predicting an Individual’s Physiologic State without a Crystal Ball

Jaques Reifman, Ph.D.
Senior Research Scientist (ST)
U.S. Army Medical Research and Materiel Command

ATA, TATRC Partnership Series
5 April 2008

opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. Army or the U.S. Department of Defense
Predicting an Individual's Physiologic State without a Crystal Ball
Knowing the Past is Good, but Knowing the Future is even Better: Predictive Models!
Biomathematical Models

- **First-Principles Models** (physiology based)
- **Data-Driven Models** (derived from data)
First-Principles Model

Ordinary Differential Equation

\[
\frac{dM}{dt} = \text{Flow}_{\text{in}} - \text{Flow}_{\text{out}}
\]

\[
M(t) = [\text{Flow}_{\text{in}} - \text{Flow}_{\text{out}}] t + M(0)
\]

Model

Prediction

Actual

Error

Prediction

M(0)

M(10)

0

Time (t)

M(t)
Data-Driven Model

\[\frac{dM}{dt} = \text{Flow}_{\text{in}} - (\text{Flow}_{\text{out}} + \text{Leak}) \]

\[M(t) = [\text{Flow}_{\text{in}} - (\text{Flow}_{\text{out}} + \text{Leak})]t + M(0) \]

Data-Driven Model

Model Prediction

\[M(0) \]

\[M(10) \]

0

Time (t)

\[t = 10 \]

Model

Prediction
Model Requirements for Practical Use

- Highly accurate (for a reasonable horizon)
 ⇒ Individual-specific models

- Minimum manual tuning
 ⇒ Adaptive first-principles models
 ⇒ “Universal” data-driven models

- need to measure “something” from the individual -
Physiologic Variables (or States) We Wish to Predict

1. Performance impairment due to total sleep loss

2. Body core temperature (minimize heat injuries)
 - Armed forces (2003-2005)†: 3617 heat exhaustion injuries
 784 heat stroke injuries

3. Glucose concentrations (diabetic patients)
 - $1 in every $10 health care dollars is attributed to diabetes*

†chppm-www.apgea.army.mil/heat/
*Hogan et al., *Diabetes Care*, 26, 917 (2003)
Performance Impairment Prediction

Problem: Predict performance impairment due to total sleep loss (82-hour study of total sleep deprivation)*

Measure of Performance: Lapses in a reaction-time test (Psychomotor Vigilance Task – PVT) every two hours

PVT lapses: # of times reaction time > 500 msec over a 10-min test session

Data from Tom Balkin’s group (Walter Reed)
Two-Process Model of Sleep Regulation*
- “state-of-the-art” first-principles model -

Process S
(sleep/wake history)

\[S(t) = 1 - \exp(-\Delta t / \tau)(1 - S(t - 1)) \]

Process C
(biological clock)

\[C(t) = \sum_{i=1}^{5} a_i \sin\left(\frac{2i\pi}{\tau}(\Delta t(t - 1) + \phi)\right) \]

*Borbély, Human Neurobiol., 1, 195 (1982)
Predicting Performance Using the Two-Process Model

Performance $P(t)$:

$P(t) = S(t) + C(t)$

For total sleep deprivation:

$P(t) = \alpha - \alpha S(0) \gamma t^{-1} + \beta \sum_{i=1}^{5} a_i \sin[i \omega((t-1)\Delta t + \phi)]$

Population-Avg. Solution: Model parameters ($\tau, S(0), \alpha, \beta, \phi$) are fixed
Solution: Individual-specific adaptive models

- Models parameters ($\tau_r, S(0), \alpha, \beta, \phi,$) are automatically adjusted, for each individual, after each PVT observation.
First-Principles, Two-Process Model
- Adaptive, Individual-Specific Model -

\[P(t) = \alpha - \alpha S(0) \gamma^{t-1} + \beta \sum_{i=1}^{5} a_i \sin(i \omega (\Delta t(t-1) + \phi)) \]

Sleep-Deprived Soldier

More data collected

Model updated and new prediction

Performance \(P(t) \)

Time \(t \)
Adaptive Individual-Specific Models*

Performance (P):

\[P(t) = \alpha - \alpha S(0) \gamma^{-1} + \beta \sum_{i=1}^{5} a_i \sin(i \omega (\Delta t(t-1) + \phi)) \]

Parameters Estimated

- \(\beta \) and \(\phi \)
- \(\alpha S(0) \) and \(\gamma \)
- \(\alpha \)

Predicting a Vulnerable Subject

Vulnerable (subject #44)
Population-Average Prediction

- Population average (RMSE=18.9)
- Vulnerable (subject #44)
Individualized vs. Population-Average Predictions

Predicting a Resilient Subject

PVT lapses data

Resilient (subject #26)
Population-Average Prediction

PVT lapses (greater impairment \rightarrow) over time (hours)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

PVT lapses data
Resilient (subject #26)

Population average (RMSE = 23.9)
Individually vs. Population-Average Predictions

PVT lapses (greater impairment \rightarrow)

- Population-average (RMSE = 23.9)
- Individualized (RMSE = 6.8)

2-hour ahead prediction

Resilient
(subject #26)
Autoregressive (AR), Data-Driven Model

\[y(t) = b_1 y(t - 1) + b_2 y(t - 2) + \ldots + b_{30} y(t - 30) \]

- \(y(t) \): measurement/prediction at time \(t \)
- \(b_i \): model coefficients (unknown)
- 30: number of previous measurements

Found to be individual independent!!!
Autoregressive (AR), Data-Driven Model
- “Universal,” Individual-Independent Model -

Continuous Glucose Monitor

Glucose Measurements

Data-Driven, Universal Model (fixed coefficients b_i)

Predictions

Glucose

Time (min)
Problem: Predict core temperature 20-minutes ahead*

Measurement: Temperature pill (1-minute data)

Data from Reed Hoyt’s group, U.S. Army Research Institute of Environmental Medicine (USARIEM)
Cadet’s Model Used to Predict Soldier’s Core Temperature 20-min Ahead
Soldier’s Model Used to Predict Cadet’s Core Temperature 20-min Ahead

Gribok, Buller, Hoyt, and Reifman, under review
Glucose Prediction for Type 1 & 2 Diabetes
- three studies using distinct continuous glucose monitoring (CGM) devices -

<table>
<thead>
<tr>
<th>CGM Device*</th>
<th># of Subjects</th>
<th>Diabetes Type</th>
<th>Sampling Frequency (min)</th>
<th>Collection Time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSense</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>DexCom</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>56</td>
</tr>
<tr>
<td>Guardian RT</td>
<td>18</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

*Data provided by Ken Ward (iSense), Robert Vigersky (DexCom), Dircenct (Guardian RT)
Glucose Prediction for iSense Subject #7

- **30-min ahead (RMSE=2.3 mg/dl, lag=0 min)**
- **60-min ahead (RMSE=13.9 mg/dl, lag=12 min)**
- **90-min ahead (RMSE=29.5 mg/dl, lag=38 min)**

Model Coefficients: physiologic
Model Stability: stable
Prediction Error: small
Prediction Time Lag: small

Reifman et al., *Diabetes Science & Technology*, 1, 478 (2007)
Gani et al., under review
Models from 3 Different Subjects Used for Glucose Prediction of iSense Subject #7

- 30-min ahead, iSense #8 model (RMSE=3.1 mg/dl, lag=0 min)
- 30-min ahead, Guardian RT #13 model (RMSE=2.9 mg/dl, lag=0 min)
- 30-min ahead, DexCom #4 model (RMSE=3.3 mg/dl, lag=0 min)
Universal Model

- predictions across different subjects, devices, types of diabetes -

<table>
<thead>
<tr>
<th>Subject #</th>
<th>iSense Model (Avg. 8)</th>
<th>Guardian RT Model (Avg. 18)</th>
<th>DexCom Model (Avg. 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE (mg/dl)</td>
<td>Lag (min)</td>
<td>RMSE (mg/dl)</td>
</tr>
<tr>
<td>1</td>
<td>2.3</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>3.4</td>
<td>0.0</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>3.7</td>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>3.2</td>
<td>1.3</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>4.1</td>
<td>0.0</td>
<td>3.9</td>
</tr>
<tr>
<td>6</td>
<td>3.8</td>
<td>0.0</td>
<td>3.6</td>
</tr>
<tr>
<td>7</td>
<td>3.0</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>8</td>
<td>3.3</td>
<td>0.0</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>2.5</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Average</td>
<td>3.3</td>
<td>0.3</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Gani et al., in preparation
What’s Next? Field Testing of Universal Model

Real-Time Body Core Temperature Prediction

\[y(t) = b_1 y(t - 1) + b_2 y(t - 2) + \ldots + b_{30} y(t - 30) \]

Joint effort with Reed Hoyt’s group (USARIEM)
“All models are wrong, some are useful.”

George Box
QUESTIONS?

Acknowledgments:
COL R. Vigersky (WRAMC)
Dr. K. Ward (iSense)
Dr. R. Hoyt (USARIEM)
Mr. M. Buller (USARIEM)
Dr. T. Balkin (WRAIR)
Dr. N. Wesensten (WRAIR)

Financial Support:
RAD 3 (MRMC)
AMEDD/TATRC (AAMTI)

www.bhsai.org