If you would like your presentation included in the 75th MORSS Final Report CD it must:

1. Be unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.);
2. Include MORS Form 712CD as the first page of the presentation;
3. Have an approved MORS form 712 A/B and
4. Be turned into the MORS office no later than: DEADLINE: 14 June 2007 (Late submissions will not be included.)

Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s):

Carol DeZwarte and Tovey Bachman

Principal Author's Organization and address:
LMI
2000 Corporate Ridge
McLean, VA 22102-7805

Phone: 703-917-7230
Fax: 703-917-7519
Email: cdezwarte@lmi.org

Please use the same title listed on the 75th MORSS Disclosure Form 712 A/B. If the title of the presentation has changed please list both.

Original title on 712 A/B: Peak Policy for Reparable Parts

If the title was revised please list the original title above and the revised title here:

PRESENTED IN:

WORKING GROUP: 19, 21
COMPOSITE GROUP:
SPECIAL SESSION 1:
SPECIAL SESSION 2:
SPECIAL SESSION 3:
DEMONSTRATION:
POSTER:
TUTORIAL:
OTHER:

This presentation is believed to be: Unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.)
Peak Policy for Reparable Parts

LMI 2000 Corporate Ridge McLean, VA 22102-7805

Approved for public release, distribution unlimited

Peak Policy for Reparable Parts

Carol DeZwarte
Tovey Bachman

Presented at 75th MORS Symposium
Agenda

• Peak Policy Background
 – What is Peak Policy?
 – Consumable Item Analyses

• Applying Peak Policy to Reparable Items

• Preliminary Results

• Next Steps
What is Peak Policy?

• New rules for managing sporadic demand items that:
 – Set reorder points based on peak (highest in trailing # periods) demands and price-based multipliers
 – Set order quantities based on item price
 – Change the threshold between replenishment and NSO
 – Forecast *how often* future demands occur instead of *how much* demand occurs

• Above activity threshold, keep baseline policy for frequently-demanded items
What is sporadic demand?
Peak Policy Background

• Developed by LMI to improve service on sporadic demand items
• Enables tradeoffs between wait time, investment, and procurement actions
 – policies tailored to customer goals
 – service level vs. investment curves aid development
• Successful pilot at DLA on initial item population
• Further implementation activities ongoing
Consumable Item Analyses

- Analyses on over 20 consumable item populations show significant potential
 - 25-50% wait time reduction
 - Up to 15% reduction in inventory investment
 - Up to 35% reduction number of orders placed
- Benefits shown at wholesale AND end-user levels of supply chain
- Pilot program showed benefits quickly
 - Long lead times typically delay improvements
Two Policies’ Projected Performance
Sample Item Population

<table>
<thead>
<tr>
<th>% Difference from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60%</td>
</tr>
<tr>
<td>-50%</td>
</tr>
<tr>
<td>-40%</td>
</tr>
<tr>
<td>-30%</td>
</tr>
<tr>
<td>-20%</td>
</tr>
<tr>
<td>-10%</td>
</tr>
<tr>
<td>0%</td>
</tr>
<tr>
<td>10%</td>
</tr>
<tr>
<td>20%</td>
</tr>
<tr>
<td>30%</td>
</tr>
<tr>
<td>40%</td>
</tr>
<tr>
<td>50%</td>
</tr>
<tr>
<td>60%</td>
</tr>
</tbody>
</table>

Same cost, better performance
Better cost, same performance

Baseline data
Unit wait time = 19 days
Req. wait time = 15 days
Unit fill rate = 86%
Req. fill rate = 86%
orders = 755/yr
$ on hand = $4.0M

- Purple: Unit Wait Time (Days)
- Blue: Req Wait Time (Days)
- Red: # of Orders Placed
- Light blue: Time Average of $ Value of On Hand
- Brown: Unit Fill Rate
- Light brown: Requisition Fill Rate
Trading Off Fill Time vs. $ On Hand
Sample Item Population

Curve shows Peak policy options

Current policy

Improves both metrics
Near Term Impacts
Sample Item Population

Peak policy:
Same cost, better performance

Baseline Yr 1 orders = 2608
Baseline Yr 1 $ on hand = $17.6M
Agenda

✔ Peak Policy Background
 ✔ What is Peak Policy?
 ✔ Consumable Item Analyses

• Applying Peak Policy to Reparable Items
• Preliminary Results
• Next Steps
Peak Policy for Reparable Items

- Two areas where policy may be applied
 - Setting procurement levels
 - Setting repair levels
- Activity threshold for reparables may be different from consumables
- Several echelons of supply chain can be analyzed
 - Wholesale procurement only
 - Depot-level repairs
 - Local repairs
Pilot Study with Army

- Use depot-level reparables only: 12,152 parts
 - Data collection for field-level reparables too involved for initial studies
- Initial simulations ignore effect of migration, so limited to the 1,372 NSO-2 items
 - Prevent movement across activity threshold between NSO-2 and demand-supported items
- Apply several computational simplifications to make policy emulation easier at early stages
- “Peak” demand considers condemnations only
Simulated Reparable Results

- Unit fill rates improved up to 8% (30% reduction in non-fills)
- More difficult keeping dollars in inventory under control compared to consumable items
 - Item prices much larger than for consumables
- Procurement actions reduced by up to 30%
- Unable to reduce wait times
 - Long lead time items driving high average WTs
- Next: can we address reduce wait times by treating long lead time items differently?
Baseline data
Unit wait time = 24 days
Req. wait time = 17 days
$ on hand = $97.5M
Requisition fill rate = 85%
orders = 642/yr

Unit Wait Time (Days)
Req Wait Time (Days)
of Orders Placed
Time Average of $ Value of On Hand
Requisition Fill Rate
Unit Fill Rate
Addressing Long Lead Times

• Tried several variations of scaling factor*ROP for lead time > x
 – ROP = 1.4*PeakROP for LT>12 months,
 – ROP = 2.0*PeakROP for LT>24 months,
 – Otherwise keep PeakROP

• Reduced unit and requisition lead times, but very expensive compared to equivalent Peak policy with no LT adjustments

• Create new peak policy settings to lower cost
LT-Adjusted Peak Policy
Reparable Item Population

Baseline data
Unit wait time = 24 days
Req. wait time = 17 days
$ on hand = $97.5M
Unit fill rate = 79%
Req. fill rate = 85%
orders = 642/yr
Trade-Off for LT-Adjusted Peak Policy
Reparable Item Population
Challenges

- All services have condemnation vs. rottable demand data available, BUT
 - Some data not recorded in national databases
 - Condemnation data not always collected at NSN level
- Army computations complex with many exceptions
 - Needed to simplify some rules; figure out where duplication was necessary to retain integrity of emulation
- Interaction of repair pipelines and levels with procurement pipelines and levels complex
Next Steps

• Further explore handling of lead times
• Implement migration for Army policy across NSO/demand-supported threshold
• Discuss what policy simplifications should be removed (i.e. make simulation more accurate)
• Expand exploration to other organizations
 – Air Force
 – Navy
 – FAA
• Expand exploration to repair policies
Credits

- AMSAA team
 - Mike Johnson, Eric Wehde, Meyer Kotkin, Tom Hagadorn
Backup – Population Data

- 1372 NSO-2 items
- $69.3M annual demand
 - total demand qty * unit price for each item
 - NSO items treated as if repair is not an option so all demands are modeled as condemnations
 - Treating all demands as repairs instead, annual demand @ 15% repair prices = $10.4M
- Item price percentiles
 - 25% = $713.62
 - 75% = $6963.18
 - 50% = $2079.00
 - 90% = $26399.38
Backup: Computation Simplifications

- Wilson EOQ calculation used for order quantities
- War reserves and below-depot assets excluded
 - Below-depot activity not modeled
- Repair safety level calculation uses same shadow price as procurement safety level
- Shadow prices static