Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORSS website.

Name of Principal Author and all other author(s): LTC (R) Gerald M. Pearman, MAJ Walter Kent, Dr Tom Lucas, Mr Vic Middleton, MAJ Jon Alt

Principal Author’s Organization and address: Contractor, Air Force Research Lab, 888 Lottie Street, Monterey, CA 93940

Phone: 831-869-5125 Email: gerald-pearman@us.army.mil

Original title on 712 A/B: Modeling Chemical Environments and Effects on Mobile Forces Using an Agent-based Simulation

Revised title:

Presented in: WG(s) #, 29 , CG , Special Session , Demonstration , Tutorial , or Focus Session #

The following presentation is believed to be: unclassified, approved for public release, distribution unlimited, and is exempt from US export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et.seq.)
Modeling chemical Environment on Mobile Forces Using and Agent-Based Simulation

Air Force Research Lab Monterey, Canada 93940

 Approved for public release, distribution unlimited

See also ADM202526. Military Operations Research Society Symposium (75th) Held in Annapolis, Maryland on June 12-14, 2007., The original document contains color images.
Modeling Chemical Environments and Effects on Mobile Forces Using an Agent-based Simulation

Authors
MAJ Walter Kent
Dr Tom Lucas
LTC (R) Gerald M. Pearman
Mr Vic Middleton
MAJ Jon Alt
Agenda

• Research questions
• Scenario review
• DOE
• Findings
• Future work
Gas Tanker Blast Kills Nine in Iraq

Bomb Rips Through Tanker Carrying Chlorine Gas, Killing Nine, Filling Hospital Beds in Iraq

A car bomb and a suicide attacker killed at least 11 people across Baghdad Tuesday, Feb. 20, 2007 as militants show increasing defiance to a major security operation.

By BRIAN MURPHY Associated Press Writer

BAGHDAD, Iraq Feb 21, 2007 (AP)
Primary Research Question: How does the level of chemical SA impact combat effectiveness of a Future Force Warrior (FFW) platoon?

Supporting Questions:
• How to model chemical agents?
• How to model chemical detection, protection, and effects on soldiers?
• How to represent chemical SA?
• Is Pythagoras a viable tool in modeling a chemical environment?
Model Assumptions & Constraints

• Assumptions
 – Mask provides 100% protection from chemical
 – Chemical SA affected by detector distribution and intelligence estimates

• Constraints
 – The only protective gear modeled is mask
 – No civilians modeled
 – Enemy not affected by chemical
Battlespace

not to scale
Measures of Performance

• Detection
 – Self-detection after 2 min exposure\(^1\)
 – Mechanical JCAD detection varied from 2 – 14 sec exposure\(^2\)

• Protection
 – State change sets vulnerability to zero (100% protection)
 – Easily varied for future studies using this model

• Performance effects
 – Donning mask degrades speed 20%, marksmanship 20%, and field of view 40%\(^3\)

\(^1\) Medical Aspects of Chemical and Biological Warfare
\(^2\) JCAD Operational Requirements Document
\(^3\) Military Psychology, 9(4) & CANE Study
Measures of Effectiveness

- Percent blue kinetic (hostile fire) casualties
- Percent soldiers lethally dosed
- Percent soldiers incapacitated
Design of Experiment

Traditional Approach:
• Limit number of factors or scenario alternatives
• “Fix” all other factors in the simulation to specified values
 – Isolate factors
• Limit number of replications for each design point
 – “2^{100} is forever”, Gen J. Welch

Emergent Analysis:
• Examine multiple factors simultaneously
 – Identify significant factors and interactions
• Technique: NOLH design
 – Use relatively few design points with space filling properties
 – Achieve (nearly) orthogonal design points
• Apply distillation simulations
 – Low resolution, agent-based

Robust Quick Turn Analysis

Kleijnen, Sanchez, Lucas & Cioppa 2005
Factors

8 design factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Speed</td>
<td>1.2 – 4.15</td>
<td>Ground speed of blue forces (km/hr)</td>
</tr>
<tr>
<td>Obedience in Mask</td>
<td>0.2 - 0.9</td>
<td>Probability of soldiers to follow orders after masking</td>
</tr>
<tr>
<td>Number UAVs</td>
<td>0 - 2</td>
<td>Number of UAVs available</td>
</tr>
<tr>
<td>Number of UGVs</td>
<td>0 - 4</td>
<td>Number of armed unmanned ground vehicles available</td>
</tr>
<tr>
<td>JCAD sensitivity</td>
<td>2 - 14</td>
<td>Time until JCAD detects (sec)</td>
</tr>
<tr>
<td>Mask marksmanship</td>
<td>0.4 - 0.8</td>
<td>Marksmanship of blue forces after they mask</td>
</tr>
<tr>
<td>Internal communications</td>
<td>0.5 - 1.0</td>
<td>Internal communications effectiveness</td>
</tr>
<tr>
<td>External communications</td>
<td>0.5 - 1.0</td>
<td>External communications effectiveness</td>
</tr>
</tbody>
</table>
Experiment

- Applied 8 factors to Nearly Orthogonal Latin Hypercube – 65 design points
- Crossed 65 design points with 2 categorical factors each at 2 levels:
 - Chemical intelligence estimate (none or near perfect)
 - Distribution of JCAD (UGV with JCAD or without JCAD)
- 65 design points x 4 scenarios = 260 total design points.
- 260 design points x 30 replications each = 7,800 computational runs

60 hours total run time

Full factorial = 5.3 years!
Data Analysis

Methodology

- Step-wise regression against means by MOE
 - Identify interactions & higher order effects
- ANOVA on dominating factors
- Regression tree
 - Identifies the factor that explains most variation in MOE
 - Useful finding most ‘important’ factors
MOE: Percent Blue Kinetic Casualties

Kinetic casualties decrease when number of ARV increase

By Number of ARV

Masking sooner increases kinetic casualties

By Level of Chemical Intelligence
MOE: Percent Blue Kinetic Casualties

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Rows</td>
<td>260</td>
<td>43.059412</td>
<td>21.666756</td>
</tr>
<tr>
<td>ARV>=2</td>
<td>164</td>
<td>32.566519</td>
<td>15.995720</td>
</tr>
<tr>
<td>ARV>=3</td>
<td>100</td>
<td>28.181818</td>
<td>13.818798</td>
</tr>
<tr>
<td>Mask Obedience>=0.77</td>
<td>24</td>
<td>20.075765</td>
<td>9.864940</td>
</tr>
<tr>
<td>Mask Obedience<0.77</td>
<td>76</td>
<td>30.741627</td>
<td>13.948319</td>
</tr>
<tr>
<td>ARV<3</td>
<td>64</td>
<td>39.417614</td>
<td>16.843896</td>
</tr>
<tr>
<td>Initial Intell?<1</td>
<td>32</td>
<td>29.545455</td>
<td>14.819180</td>
</tr>
<tr>
<td>Initial Intell?>=1</td>
<td>32</td>
<td>49.289774</td>
<td>12.480824</td>
</tr>
<tr>
<td>ARV<2</td>
<td>96</td>
<td>60.984848</td>
<td>18.057791</td>
</tr>
<tr>
<td>Internal Comm Effectiveness>=0.65</td>
<td>80</td>
<td>57.613636</td>
<td>16.468863</td>
</tr>
<tr>
<td>Blue Speed<5</td>
<td>40</td>
<td>51.761364</td>
<td>14.221028</td>
</tr>
<tr>
<td>Blue Speed>=5</td>
<td>40</td>
<td>63.465910</td>
<td>16.640588</td>
</tr>
<tr>
<td>Internal Comm Effectiveness<0.65</td>
<td>16</td>
<td>77.840909</td>
<td>16.524879</td>
</tr>
<tr>
<td>Initial Intell?<1</td>
<td>8</td>
<td>71.590909</td>
<td>17.688102</td>
</tr>
<tr>
<td>Initial Intell?>=1</td>
<td>8</td>
<td>84.090909</td>
<td>13.527706</td>
</tr>
</tbody>
</table>

Increasing number of ARV decreases kinetic casualties 15%

Significant decrease in kinetic casualties when ARVs>=2.

No chemical intelligence produced lower kinetic casualties

Decrease in kinetic casualties when ARVs>=2.

Internal communications becomes more important with fewer ARV

Reality: 1 ARV organic to platoon
Findings (1 of 3)

• **Finding**: Prior intelligence of chemical threat reduced chemical casualties but not overall casualties.

• **Interpretation**: Degraded functionality while masked contributed to increased kinetic casualties. *Methodology of applying simple behaviors to agents produced complex results.*

• **Recommendation**: Consider greater risk against non-persistent agent.
MOE: Percent Soldiers Lethally Dosed

Prior intelligence reduces chemical fatalities

Reality: imperfect intelligence is normal

Slow foot speed (< 3.2 km/hr)

JCAD detection supports less chemical fatalities

Zero ARVs reduce lethal exposure!
• **Finding:** No ARVs in scenario resulted in lower chemical casualties (not intuitive).

• **Interpretation:** Unclear...but places to start include model artifacts, tactics, employment. *Methodology supports quick ‘what if’ analysis.*

• **Recommendation:** Explore the ‘what if’ questions.
MOE: Percent Soldiers Incapacitated

Prior intelligence reduces chemical exposure

Further examine ARV/UAV tactics

Instantaneous detection requirement

Reality: imperfect intelligence is normal

Further examine ARV/UAV tactics

Instantaneous detection requirement
• **Finding**: While quicker JCAD detections uniformly reduced chemical casualties, detection thresholds between 6-8 seconds showed appreciably reduced casualties.

• **Interpretation**: What is impact of achieving instantaneous JCAD requirement? Are alternate thresholds reasonable requirements? *Methodology enables rapid ‘what if’ analysis and examination of factors at multiple levels.*

• **Recommendation**: Conduct further research on JCAD sensitivity.
Conclusions

• Pythagoras provides a framework that is easily adapted to modeling efforts and low resolution effects in the CBRN realm
• DOE research at NPS provides ground-breaking methods to experimental design
• Recommend future work:
 – Review employment tactics of ARVs and UGVs
 – Introduce civilians to the battlefield
 – Examine physiological/psychological effects of extended operations in MOPP
 – Introduce false alarms into current model
Questions