If you would like your presentation included in the 75th MORSS Final Report CD it must:

1. Be unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.);
2. Include MORS Form 712CD as the first page of the presentation;
3. Have an approved MORS form 712 A/B and
4. Be turned into the MORS office no later than: DEADLINE: 14 June 2007 (Late submissions will not be included.)

Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORSS web site.

Name of Principal Author and all other author(s):

Mark A. Rivera

Principal Author's Organization and address:
Boeing Phantom Works, SD&A
5301 Bolsa Ave MC H017-D420
Huntington Beach, CA. 92647-2099

Phone: 714-896-1789
Fax: 714-372-0841
Email: mark.a.rivera@boeing.com

Please use the same title listed on the 75th MORSS Disclosure Form 712 A/B. If the title of the presentation has changed please list both.

Original title on 712 A/B:
Quantifying the Military Effectiveness of Persistent ISR

If the title was revised please list the original title above and the revised title here:

PRESENTED IN:

<table>
<thead>
<tr>
<th>WORKING GROUP:</th>
<th>5 and 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPOSITE GROUP:</td>
<td>POSTER:</td>
</tr>
<tr>
<td>SPECIAL SESSION 1:</td>
<td>TUTORIAL:</td>
</tr>
<tr>
<td>SPECIAL SESSION 2:</td>
<td>OTHER:</td>
</tr>
<tr>
<td>SPECIAL SESSION 3:</td>
<td></td>
</tr>
</tbody>
</table>

This presentation is believed to be: Unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.)
Quantifying the Military Effectiveness of Persistent ISR

- **REPORT DATE:** 01 JUN 2007
- **REPORT TYPE:** N/A
- **DATES COVERED:** -
- **AUTHOR(S):** Boeing Phantom Works, SD & A Huntington Beach, CA 92647-2099
- **SPONSORING/MONITORING AGENCY:** See also ADM202526. Military Operations Research Society Symposium (75th) Held in Annapolis, Maryland on June 12-14, 2007, The original document contains color images.
Quantifying the Military Effectiveness of Persistent ISR

Presented at 75th MORSS
June 12-14, 2007

Mark A. Rivera
Boeing Phantom Works
Strategic Development & Analysis
Agenda

Engineering, Operations & Technology | Phantom Works

• Persistent ISR Study Objective
• Persistence Defined
• Modeling & Simulation
• Measures of Effectiveness
• Architecture Design Search
• Summary
P-ISR Study Objective

• Develop a process for exploration and design of cost effective Persistent Intelligence, Surveillance, & Reconnaissance (P-ISR) architectures
 – How much persistence is enough to provide critically needed utility?
 – What is the cheapest way to get there?
Needed for the Study

- Means to quickly explore and compare a wide variety of P-ISR architecture designs
 - Included air and space assets
- Means to quantify the military effectiveness of those designs
- Means to quantify the cost of those designs

This briefing will focus on the second bullet and partly on the first
What is meant by “Persistent” ISR?

Definition used in analysis:
Persistence matches the frequency of revisit with the "time stability" of the object that you are looking at—the speed with which things change.

John Stenbit, Former Assistant Secretary of Defense for Networks and Information Integration

Example: enemy force build-up over time

100% Persistence captures all critical changes
50% Persistence only captures 50% of critical changes

Revisit rate required for persistence is scenario specific
Approximate Scenario Time Stabilities

<table>
<thead>
<tr>
<th>Target Type</th>
<th>Time Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of Uranium Enrichment Plant</td>
<td>Months</td>
</tr>
<tr>
<td>Massing of Forces</td>
<td>Days</td>
</tr>
<tr>
<td>Movement of Mobile Missile launchers</td>
<td>Minutes/Hours</td>
</tr>
<tr>
<td>Subversive Activity at Infrastructure Sites (Oil pump, Power stations....)</td>
<td>Seconds/Minutes</td>
</tr>
<tr>
<td>Human Detection and ID (i.e., Human Bomb)</td>
<td>Seconds</td>
</tr>
<tr>
<td>Border Crossings (Humans and Vehicles)</td>
<td>Seconds</td>
</tr>
</tbody>
</table>

Effectiveness levels off at the time stability of key dynamic observables in the scenario

Combat Search & Rescue (CSAR) Scenario

- **Time Stability = 10 mins**

You don’t want to buy more persistence than you need
M&S Required to Quantify Value of P-ISR

- Persistence required is scenario specific so you must: Define a specific scenario and mission goals
- Define quantifiable Measures of Effectiveness (MOEs) for achieving those goals
- Define force structures, assets, and capabilities of red and blue forces
 - Blue forces have P-ISR capability
- Model and simulate to determine a force-on-force outcome
 - as a function of P-ISR performance
 - Persistence (Revisit Rate)
 - Data quality (Prob. Of Detection)
 - Data latency (comm/process delays)

You must have good degree of M&S to capture this response
- SEAS is a multi-agent force-on-force reactive simulation
- Blue forces receive P-ISR information in an NCO enabled environment
 - They don’t care where or how the information is originated, only that they get what they need when they need it
- Blue forces still have some capability even with diminished or absent P-ISR information
 - Indigenous capability determines residual effectiveness
 - Also determines response to decreased/increased ISR
- Red forces have some ability to react and counter
 - Adversary capabilities also determine effectiveness of blue force
 - Both residual and ISR enabled

SEAS simulates blue force’s improved ability to respond to a capable adversary as a result of acquiring P-ISR information
Mission effectiveness can be determined by “dialing” architecture performance (information) independently of a specific architecture.
• MOE responses are captured in multi-dimensional look-up tables.
 – The result of 1000’s of SEAS simulation executions
• Variations on level of persistence and accuracy of data can be quickly determined during architecture design searches

Search & Rescue Scenario

Locate and rescue a handicapped but mobile rescuee in enemy territory
Evade detection by enemy
Avoid combat engagements

MOE response surfaces provide a means for rapidly determining mission effectiveness as a result of any given P-ISR architecture
Measures of Effectiveness Types

SEAS / MATLAB Scenarios can Provide These MOEs

- Probability of Mission Success
 - Probability of meeting primary objective(s) i.e. rescue, secure, destroy, etc.
- Mission Duration (Time Improvements)
 - Time to secure an asset or infrastructure under attack
 - Time to neutralize enemy capabilities and assets
- Range of Effectiveness
 - Neutralize enemy from further away (stand-off weapons)
- Cost Effectiveness
 - Required manpower & equipment to achieve a given objective
- Survivability
 - Casualties and Equipment Losses (including those from friendly fire)
 - Duration and probability of survival
- Evasion & Stealth
 - Probability of evading enemy attack assets or danger areas
 - Probability of evading enemy sight
- Lethality
 - Enemy Casualties and Equipment
- Non-combatant Losses
 - Casualties, Assets, Infrastructure, etc.
Architecture Design Search

Engineering, Operations & Technology | Phantom Works

SEAS with MATLAB Wrapper

Scenario/Mission Simulation ➔ Mission Effectiveness

P-ISR Architecture Performance

| PERSISTENCE (Revisit Rate) | LATENCY (Age of Data) | DATA QUALITY (Probability of Detection) |

P-ISR Architecture Simulation

P-ISR Architectures Design Space

- Type of Platforms
- # Platforms
- Sensor FOV/FOR
- Area of Interest
- Communications Bandwidth
- Data Processing
- Human Decision Time
- Sensor Design
- Observation geometry
- Targets of Interest

Cost Effective Architectures Lay along Pareto Front

Cost Effective Architectures

Cost Modeling

Pareto Front

Life Cycle Cost

MOE

Copyright © 2007 Boeing. All rights reserved.
• Boeing PW has developed a means for quickly exploring cost effective designs of P-ISR architectures
• Revisit rate required for “Persistent” ISR depends highly upon the scenario and mission
 – You don’t want more persistence than you need
• Value of P-ISR information depends entirely upon a force’s ability to respond to the information
 – The indigenous capabilities of both blue and red forces
• Quantifying increased effectiveness as a result of being provided with P-ISR information requires a high degree of Modeling & Simulation
 – Multi-agent reactive simulation is a must
Backup Charts
MOEs Provided in our study

<table>
<thead>
<tr>
<th>Embassy Rescue</th>
<th>Search & Rescue</th>
<th>Rescuee Survival</th>
<th>Infrastructure Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of Rescue</td>
<td>Probability of Rescue</td>
<td>Probability of Survival</td>
<td>Time to Secure</td>
</tr>
<tr>
<td>Mission Duration</td>
<td>Mission Duration</td>
<td>Survival Duration</td>
<td>Probability of Securing</td>
</tr>
<tr>
<td>Probability of Blue Casualty</td>
<td>Probability of Blue Casualty</td>
<td>Probability of Red Casualty</td>
<td>Probability of Blue Casualty</td>
</tr>
<tr>
<td>Probability of Red Casualty</td>
<td>Probability of Red Casualty</td>
<td>Probability of Red Casualty</td>
<td>Probability of Red Casualty</td>
</tr>
</tbody>
</table>