FINAL REPORT
December 2007

REPORT NO. 07-12

PROJECTILE, 155MM, XM982, EXCALIBUR,
PACKED ONE (1) PER PA179 CONTAINER,
UNITIZED UP TO THREE (3) PER 40" x 48" WOODEN PALLET,
MIL-STD-1660 TESTS

Prepared for:
Office of PM Excalibur
ATTN: System Engineer, Laura Wells
U.S. Army ARDEC, SFAE-AMO-CASS-EX, Bldg 171A
Picatinny, NJ 07806-5000

DEFENSE AMMUNITION CENTER
VALIDATION ENGINEERING DIVISION
MCALESTER, OKLAHOMA 74501-9053

Distribution Unlimited

20080930139
AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from:

Director
U.S. Army Defense Ammunition Center
ATTN: SJMAC-DEV
1 C Tree Road, Bldg. 35
McAlester, OK 74501-9053

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.
ABSTRACT

The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV), conducted tests in accordance with MIL-STD-1660, "Design Criteria for Ammunition Unit Loads" on the XM982 155MM Excalibur Projectile packed one (1) per PA179 container, unitized up to three (3) containers per 40" x 48" wooden pallet designed by DAC, Transportation Engineering Division (SJMAC-DET). The testing was for the Office of Program Manager for Excalibur, U.S. Army ARDEC, Picatinny, NJ. Two (2) test units were each tested at a weight of 580 lbs and one (1) test unit was tested at 285 lbs. The tests accomplished were the Stacking, Repetitive Shock, Drop, Incline-Impact, Forklifting, and Disassembly tests.

Test Units #1 and #2 passed the MIL-STD-1660 requirements listed above with minimal damage incurred to the test units. Test Unit #3 was loaded using one PA179 container with two (2) wooden dunnage space fillers to represent a pallet with only one (1) round. Test Unit #3 passed the MIL-STD-1660 requirements listed above.

As a result of the performance during testing, the XM982 155MM Excalibur Projectile packed one (1) per PA179 container, unitized up to three (3) containers per 40" x 48" wooden pallet is acceptable for use by the U.S. Army.
PROJECTILE, 155MM, XM982, EXCALIBUR, PACKED ONE (1) PER PA179 CONTAINER, UNITIZED UP TO THREE (3) CONTAINERS PER 40” x 48” WOODEN PALLETT, MIL-STD-1660 TESTS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>A. BACKGROUND</td>
<td>1-1</td>
</tr>
<tr>
<td>B. AUTHORITY</td>
<td>1-1</td>
</tr>
<tr>
<td>C. OBJECTIVE</td>
<td>1-1</td>
</tr>
<tr>
<td>D. CONCLUSION</td>
<td>1-1</td>
</tr>
<tr>
<td>2. ATTENDEES</td>
<td>2-1</td>
</tr>
<tr>
<td>3. TEST PROCEDURES</td>
<td>3-1</td>
</tr>
<tr>
<td>4. TEST EQUIPMENT</td>
<td>4-1</td>
</tr>
<tr>
<td>5. TEST RESULTS</td>
<td>5-1</td>
</tr>
<tr>
<td>6. DRAWINGS</td>
<td>6-1</td>
</tr>
</tbody>
</table>
PART 1 – INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV), conducted tests in accordance with MIL-STD-1660, "Design Criteria for Ammunition Unit Loads" on the XM982 155MM Excalibur Projectile packed one (1) per PA179 container, unitized up to three (3) containers per 40" x 48" wooden pallet designed by DAC, Transportation Engineering Division (SJMAC-DET). The testing was for the Office of Program Manager for Excalibur, U.S. Army ARDEC, Picatinny, NJ. Two (2) test units were each tested at a weight of 580 lbs and one (1) test unit was tested at 285 lbs. The tests accomplished were the Stacking, Repetitive Shock, Drop, Incline-Impact, Forklifting, and Disassembly tests.

B. AUTHORITY. This test was conducted IAW mission responsibilities delegated by the U.S. Army Joint Munitions Command (JMC), Rock Island, IL. Reference is made to the following:

1. AR 740-1, 15 June 2001, Storage and Supply Activity Operation

C. OBJECTIVE. The objective of the tests was to determine if the XM982 155MM Excalibur Projectile packed one (1) per PA179 container, unitized up to three (3) containers per 40" x 48" wooden pallet met MIL-STD-1660 test requirements prior to the acceptance of the unitization procedures by the U.S. Army.

D. CONCLUSION. As a result of the performance during testing, the XM982 155MM Excalibur Projectile packed one (1) per PA179 Container, unitized up to three (3) containers per 40" x 48" wooden pallet is acceptable for use by the U.S. Army.
PART 2 - ATTENDEES

<table>
<thead>
<tr>
<th>DATE PERFORMED:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Unit #1- 22 October 2007</td>
<td></td>
</tr>
<tr>
<td>Test Unit #2- 24 October 2007</td>
<td></td>
</tr>
<tr>
<td>Test Unit #3- 1 November 2007</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTENDEES</th>
<th>MAILING ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffery L. Dugan</td>
<td>Director</td>
</tr>
<tr>
<td>General Engineer</td>
<td>U.S. Army Defense Ammunition Center</td>
</tr>
<tr>
<td>DSN 956-8090</td>
<td>ATTN: SJMAC-DEV</td>
</tr>
<tr>
<td>(918) 420-8090</td>
<td>1 C Tree Road, Bldg. 35</td>
</tr>
<tr>
<td></td>
<td>McAlester, OK 74501-9053</td>
</tr>
</tbody>
</table>

Daryl Sieczkowski	Director
Electronic Technician	U.S. Army Defense Ammunition Center
DSN 956-8988	ATTN: SJMAC-DEV
(918) 420-8988	1 C Tree Road, Bldg. 35
	McAlester, OK 74501-9053
PART 3 - TEST PROCEDURES

The test procedures outlined in this section were extracted from the MIL-STD-1660. The tests are conducted on ammunition pallet units or unit loads and are summarized as follows:

A. STACKING TEST. The test unit will be tested to simulate a stack of a full pallet load of 4,000 lbs, for a period of one (1) hour. This stacking load will be simulated by subjecting the specimen to a compression weight equal to one (1) full pallet load. Photo 1 below shows an example of a unit load in the compression tester.

Photo 1. Example of Stacking Test.
(2.75-inch Hydra 70, PA151 Rocket Pallet in the Stacking Test.)

B. REPETITIVE SHOCK TEST. The repetitive shock test is conducted IAW Method 5019, Federal Standard 101. The test procedure is as follows: The test unit will be placed on (not fastened to) the platform. With the test unit in one position, the platform will be vibrated at ½-inch amplitude (1-inch double amplitude) starting at a frequency of approximately 3 cycles-per-second. The
frequency will be steadily increased until the specimen leaves the platform. The resonant frequency is achieved when a 1/16-inch-thick feeler gage momentarily slides freely between every point on the specimen in contact with the platform at some instance during the cycle. Midway into the testing period, the specimen will be rotated 90 degrees, and the test continued for the duration. Unless failure occurs, the total time of vibration will be three hours. Photo 2 shows an example of the repetitive shock test.

![Photo 2. Example of the Repetitive Shock Test.](MSTF Low)

C. EDGEWISE-ROTATIONAL DROP TEST. This test is conducted using the procedures of Method 5008, Federal Standard 101. The procedure for the edgewise rotational drop test is as follows: The test unit will be placed on its skids with one end of the pallet supported on a beam 6 inches high. The height of the beam will be increased as necessary to ensure that there is no support for the skids between the ends of the specimen when the dropping takes place, but should not be high enough to cause the specimen to slide on the supports when the dropped end is raised for the drop. The unsupported end of the specimen is then raised and allowed to fall freely to the concrete, pavement, or similar unyielding surface from a prescribed height. Unless otherwise specified, the height of drop for level A protection will conform to the following tabulation:
### GROSS WEIGHT (WITHIN RANGE LIMITS) (Pounds)	DIMENSIONS OF ANY EDGE, HEIGHT OR WIDTH (WITHIN RANGE LIMITS) (Inches)	HEIGHT OF DROPS ON EDGES (Inches)
150-250 | 60-66 | Level A: 36, Level B: 27
250-400 | 66-72 | Level A: 32, Level B: 24
400-600 | 72-80 | Level A: 28, Level B: 21
600-1,000 | 80-95 | Level A: 24, Level B: 18
1,000-1,500 | 95-114 | Level A: 20, Level B: 16
1,500-2,000 | 114-144 | Level A: 17, Level B: 14
2,000-3,000 | Above 145- No limited | Level A: 15, Level B: 12
Above – 3,000 | | Level A: 12, Level B: 9

Figure 1.

Photo 3. Example of Edgewise Rotational Drop Test (MSTF Low)

D. **INCLINE-IMPACT TEST.** This test is conducted by using the procedure of Method 5023, Incline-Impact Test of Federal Standard 101. The procedure for the incline-impact test is as follows: The test unit will be placed on the carriage with the surface or edge to be impacted projecting at least 2 inches beyond the
front end of the carriage. The carriage will be brought to a predetermined position on the incline and released. If it were desired to concentrate the impact on any particular position on the container, a 4- x 4-inch timber may be attached to the bumper in the desired position before the test. The carriage will not strike any part of the timber. The position of the specimen on the carriage and the sequence in which surfaces and edges are subjected to impacts may be at the option of the testing activity and dependent upon the objective of the test. When the test is to determine satisfactory requirements for a container or pack, and, unless otherwise specified, the specimen will be subjected to one impact on each surface that has each dimension less than 9.5 feet. Unless otherwise specified, the velocity at the time of the impact will be 7 feet-per-second. Photo 4 shows an example of this test.

![Photo 4. Example of the Incline-Impact Test.](2.75-Inch, Hydra 70, PA151 Rocket Pallet on incline-impact tester.)

E. SLING COMPATIBILITY TEST. The test unit utilizing special design or non-standard pallets will be lifted, swung, lowered and otherwise handled as necessary, using slings of the types normally used for handling the unit loads
under consideration. Slings will be easily attached and removed. Danger of slippage or disengagement when load is suspended will be cause for rejection of the specimen.

F. FORKLIFTING TESTS. The test unit will be lifted clear of the ground by a forklift from the end of the test unit and transported on the forks in the level or back-tilt position. The forklift will pass over the Optional Rough Handling Course for Forklift Trucks as outlined in MIL-STD-1660. The course will consist of parallel pairs of 1-inch boards spaced 54 inches apart and will be laid flat wise on the pavement across the path of the forklift. One pair will be laid at an angle of approximately 60 degrees to the path so that the left wheel strikes first. Another pair will be laid securely across the path of the forklift so that the wheels strike simultaneously. Another pair will be laid at an angle of approximately 75 degrees to the path so that the right wheel strikes first. The test unit will be transported over the Optional Rough Handling Course. The test unit shall be observed for deflection and damage. The test unit will be rotated 90 degrees and the test unit lifted from the side and the above steps repeated.

G. DISASSEMBLY TEST. Following all rough handling tests the test unit may be squared up within 2 inches of its original shape and on a flat level surface. The strapping will then be cut and removed from the palletized load. Assembly of the test unit will be such that it retains its unity upon removal of the strapping.
PART 4 - TEST EQUIPMENT

A. COMPRESSION TESTER

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nomenclature</td>
<td>Compression Table</td>
</tr>
<tr>
<td>2. Manufacturer:</td>
<td>Ormond Manufacturing</td>
</tr>
<tr>
<td>3. Platform:</td>
<td>60- by 60-inches</td>
</tr>
<tr>
<td>4. Compression Limit:</td>
<td>50,000 pounds</td>
</tr>
<tr>
<td>5. Tension Limit:</td>
<td>50,000 pounds</td>
</tr>
</tbody>
</table>

B. TRANSPORTATION (REPETITIVE SHOCK) SIMULATOR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nomenclature</td>
<td>Repetitive Shock Simulator</td>
</tr>
<tr>
<td>2. Manufacturer:</td>
<td>Gaynes Laboratory</td>
</tr>
<tr>
<td>3. Capacity:</td>
<td>6,000-pound payload</td>
</tr>
<tr>
<td>4. Displacement:</td>
<td>1/2-inch amplitude</td>
</tr>
<tr>
<td>5. Speed:</td>
<td>50 to 400 RPM</td>
</tr>
<tr>
<td>6. Platform:</td>
<td>5- by 8-foot</td>
</tr>
</tbody>
</table>

C. INCLINED PLANE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Manufacturer:</td>
<td>Conbur Incline</td>
</tr>
<tr>
<td>2. Type:</td>
<td>Impact Tester</td>
</tr>
<tr>
<td>3. Grade:</td>
<td>10 percent incline</td>
</tr>
<tr>
<td>4. Length:</td>
<td>12-foot</td>
</tr>
</tbody>
</table>
PART 5 - TEST RESULTS

A. CONTAINER DATA. The test units were inertly loaded to the specified design weight. Special care was taken to ensure that each individual interior ammunition container had the proper amount of weight in order to achieve a realistic pallet center of gravity (CG). Once properly prepared, the test unit was tested using MIL-STD-1660, “Design Criteria for Ammunition Unit Loads,” requirements. Photo 5 shows the configuration of Test Units #1 and #2.

Photo 5. Configuration of Test Units #1 and #2.

TEST UNIT #1:
Test Date: 22 October 2007
Weight: 580 pounds
Length: 48 inches
Width: 40 inches
Height: 16-1/4 inches

Container inertly loaded with:
3 PA171 Containers
loaded to 156 pounds each with inert material
TEST UNIT #2:
Test Date: 24 October 2007
Weight: 580 pounds
Length: 48 inches
Width: 40 inches
Height: 16-1/4 inches

Container inertly loaded with:
3 PA171 Containers
loaded to 156 pounds each with inert material

Photo 6. Configuration of Test Unit #3.

TEST UNIT #3:
Test Date: 1 November 2007
Weight: 285 pounds
Length: 48 inches
Width: 40 inches
Height: 16-1/4 inches

Container inertly loaded with:
1 PA171 Container
loaded to 156 pounds with inert material
B. **TEST RESULTS OF TEST UNIT #1 DURING MIL-STD-1660 TESTING:**

1. **STACKING TEST.** Test Unit #1 was compressed with a load force of **4,000** pounds for 60 minutes on 22 October 2007. There was no damage noted to the test unit as a result of this test. See Photo 7 below for a typical picture of the test unit in the compression tester.

![Photo 7. Test Setup for Stacking Testing.](image)

2. **REPEETITIVE SHOCK TEST.** Test Unit #1 was vibrated 90 minutes at **210** RPM in the longitudinal orientation and 90 minutes at **225** RPM in the lateral orientation on 22 October 2007. No significant damage was noted during this test. See Photo 8 below for a typical picture of the test unit during Repetitive Shock tests.
3. **EDGEWISE-ROTATIONAL DROP TEST.** Test Unit #1 was edgewise-rotationally dropped from a height of 28 inches on the longitudinal and lateral sides. No damage was noted during this test. See Photo 9 for the test setup for the Drop tests.

4. **FORKLIFTING TEST.** Test Unit #1 was lifted from the end of the pallet on the forks of the forklift truck and carried over the hazard course three times with no damage or instability noted. The test unit was lifted from the adjacent
side of the pallet and the above steps accomplished with no problems encountered. See Photo 10 for the test setup during the Forklifting test.

Photo 10. Test Setup for Forklifting Testing.

5. **DISASSEMBLY TEST.** During the disassembly of Test Unit #1 no additional problems were noted.

6. **CONCLUSION.** Test Unit #1 passed all required tests of MIL-STD-1660.

C. **TEST RESULTS OF TEST UNIT #2 DURING MIL-STD-1660 TESTING:**

1. **STACKING TEST.** Test Unit #2 was compressed with a load force of 4,000 pounds for 60 minutes on 24 October 2007. There was no damage noted to the test unit as a result of this test.

2. **REPETITIVE SHOCK TEST.** Test Unit #2 was vibrated 90 minutes at 210 RPM in the longitudinal orientation and 90 minutes at 225 RPM in the lateral orientation on 24 October 2007. No significant damage was noted during this test.
3. **EDGEWISE-ROTATIONAL DROP TEST.** Test Unit #2 was edgewise-rotationally dropped from a height of 28 inches on the longitudinal and lateral sides. No damage was noted during this test.

4. **FORKLIFTING TEST.** Test Unit #2 was lifted from the end of the pallet on the forks of the forklift truck and carried over the hazard course three times with no damage or instability noted. The test unit was lifted from the adjacent side of the pallet and the above steps accomplished with no problems encountered.

5. **DISASSEMBLY TEST.** During the disassembly of Test Unit #2 no additional problems were noted.

6. **CONCLUSION.** Test Unit #2 passed all required tests of MIL-STD-1660.

D. **TEST RESULTS OF TEST UNIT #3 DURING MIL-STD-1660 TESTING:**

1. **STACKING TEST.** Test Unit #3 was compressed with a load force of 4,000 pounds for 60 minutes on 1 November 2007. There was no damage noted to the test unit as a result of this test.

2. **REPETITIVE SHOCK TEST.** Test Unit #3 was vibrated 90 minutes at 210 RPM in the longitudinal orientation and 90 minutes at 225 RPM in the lateral orientation on 1 November 2007. No significant damage was noted during this test.

3. **EDGEWISE-ROTATIONAL DROP TEST.** Test Unit #3 was edgewise-rotationally dropped from a height of 28 inches on the longitudinal and lateral sides. No damage was noted during this test.
4. **Forklifting Test.** Test Unit #3 was lifted from the end of the pallet on the forks of the forklift truck and carried over the Hazard Course three times with no damage or instability noted. The test unit was lifted from the adjacent side of the pallet and the above steps accomplished with no problems encountered.

5. **Disassembly Test.** During the disassembly of Test Unit #3 no additional problems were noted.

6. **Conclusion.** Test Unit #3 passed all required tests of MIL-STD-1660.
PART 6– DRAWINGS

The following test sketches represent the load configuration that was subjected to the test criteria.
UNITIZATION PROCEDURES FOR FIELD RETURNS OF COMPLETE ROUNDS IN CYLINDRICAL METAL CONTAINERS ON 4-WAY ENTRY PALLETS

PROJECTILE, 155MM, XM982, EXCALIBUR, PACKED 1 PER PA179 CONTAINER, UNITIZED UP TO 3 CONTAINERS PER 40” X 48” WOODEN PALLET; APPROX CONTAINER SIZE 44-1/2” L X 9-1/4” W X 9-1/4” H
GENERAL NOTES
A. THIS DOCUMENT HAS BEEN PREPARED AND ISSUED IN ACCORDANCE WITH AR 740-1 AND AUGMENTS TM 743-290-1 (CHAPTER 5) AND CONFORMS TO MIL-STD-1600.

B. THE UNITIZATION PROCEDURES SPECIFIED IN THIS DRAWING ARE APPLICABLE TO FIELD RETURNS OF THREE OR LESS PARCEL PROJECTIONS PACKED IN PA179 CONTAINERS. NOTE: IF MORE THAN THREE CONTAINERS ARE TO BE RETURNED, PROCEDURES DEPICTED IN AMC DRAWING 19-41-4231/55-20PM1006 SHALL BE FOLLOWED. SEE ARDEC DRAWING 13001473 FOR DETAILS OF THE PA179 CONTAINER.

C. ANY REQUEST FOR DEVIACTION FROM THE PROCEDURES DELINATED HEREIN MUST BE DIRECTED TO THE COMMANDER, U.S. ARMY RDECOM-ARDEC, ATTN: AMSR-LAARL-TP(R), ROCK ISLAND, IL 61299-7290, FOR SPECIFIC APPROVAL. FOR EXAMPLE, SPECIFIC APPROVAL MUST BE OBTAINED FOR UNITIZATION OF AN ITEM WHEN PACKED IN CONTAINERS WHICH ARE DIFFERENT IN SIZE THAN THOSE SHOWN IN THE DRAWING FOR THAT ITEM. CONFIGURATION MANAGEMENT PROCEDURES CONTAINED IN MIL-STD-973 DO NOT APPLY TO THIS DRAWING OR ANY APPENDICES THERETO.

D. A PLUS-OR-MINUS 1/16" IS ALLOWED ON OVERALL DIMENSIONS OF A FILLER ASSEMBLY, SPACER ASSEMBLY OR ANY OTHER DUNNAGE ASSEMBLY. HOWEVER, SIMILAR PIECES IN AN ASSEMBLY MUST BE WITHIN 1/32" OF THE SAME DIMENSION.

E. DIMENSIONAL LUMBER SPECIFIED THROUGHOUT THIS PROCEDURAL DRAWING IS OF NOMINAL SIZE UNLESS OTHERWISE SPECIFIED. FOR EXAMPLE, 1" X 4" MATERIAL IS ACTUALLY 3/4" THICK BY 3-1/2" WIDE AND 2" X 4" MATERIAL IS ACTUALLY 1-1/2" THICK BY 3-1/2" WIDE.

F. IN ORDER TO OBTAIN COMPLETE (SOUND) UNITS, ALL STRAPS SHALL BE LOCATED IN PROPER ALIGNMENT AND TENSIONED SO THEY CUT INTO THE EDGE OF THE TOP ASSEMBLY AND/OR THE PALLETT DECK. AFTER TENSIONING, EACH STRAP WILL BE SECURED USING ONE SEAL AND TWO PAIRS OF NOTCHES PER SEAL.

G. WHEN APPLYING ANY STRAP, CARE MUST BE EXERCISED TO ASSURE THAT THE END OF THE STRAP ON THE UNDERSIDE OF THE JOINT EXTENDS AT LEAST 6" BEYOND THE SEAL. THIS EXTRA MINIMUM LENGTH OF THE STRAP IS REQUIRED TO PERMIT SUBSEQUENT TIGHTENING OF LOOSENED STRAPPING. RE-TENSIONING CAN BE ACCOMPLISHED WITHOUT REPLACING STRAPPING OR SPLICING STRAPPING THROUGH THE USE OF A MANUAL OR PNEUMATIC FEED TOOL, TYPE TENSIONING TOOL AND THE APPLICATION OF ONE ADDITIONAL SEAL.

MATERIAL SPECIFICATIONS
PALLETS: MIL SPEC MIL-P-15011: 4-WAY ENTRY, STYLE 1, TYPE 1, CLASS 1, PRESERVATIVE AND HEAT TREATED, SEE GENERAL NOTE "R" ON PAGE 3.

NAILS: ASTM F1667; COMMON STEEL NAIL (NLCWS OR NLCMS). ALT: UNDERLAYMENT NAIL (NLU), PALLET NAIL (NL), COOLER NAIL (NLG) OF SAME SIZE. SEE GENERAL NOTE "Q" ON PAGE 3.

PLYWOOD: COMMERCIAL ITEM DESCRIPTION A-A-55057, INDUSTRIAL PLYWOOD, INTERIOR WITH EXTERIOR GLUE, GRADE C-0. IF SPECIFIED GRADE IS NOT AVAILABLE, A BETTER INTERIOR OR AN EXTERIOR GRADE MAY BE SUBSTITUTED.

STRAPPING STEEL: ASTM D5953: FLAT STRAPPING, TYPE 1, HEAVY DUTY, FINISH B (GRADE 2), SIZE 3/4" X 0.15" OR 0.175" OR 0.18". ALTERNATIVE SIZE 1-1/2" X .035" OR .031". NOTE: IF EDGES DO NOT MEET THE PRECISE TEST FOR GRADE 2, ANY WEAR OR SLIT EDGES SHALL HAVE A FINISH OVERLAY APPLIED.

SEAL STRAP: ASTM D5953: CLASS H, FINISH B (GRADE 2), DOUBLE NOTCH TYPE. STYLE 1, II, III, OR IV. ALTERNATIVE SEAL FINISH: SIGNSIDE OR DELTA PAINTED SEALS MAY BE USED AS AN ALTERNATIVE IF ALL SURFACES ARE PAINTED. GROOVED BACKING IS NOT PERMITTED.

STAPLE STRAP: ASTM F1667; STFC-189, STFC-198, STFC-207, OR STFC-216, 15/16" OR 1" CROWN WIDTH X 3/4" LEG LENGTH FOR 3/4" STRAPPING OR STFC-224, 1-1/2" CROWN WIDTH X 3/4" LEG LENGTH FOR 1-1/4" STRAPPING.

H. PALLEL UNIT LOADS SHALL BE INSPECTED FOR TORN, DETERIORATED OR LOOSENED STRAPPING PRIOR TO SHIPPING.

1. TORN OR BROKEN STRAPS SHOULD BE REPLACED BY CONTRACTORS, BUT MAY BE REPAIRED AT THE DEPOT/FIELD LEVEL BY SPLICING IN A MANNER SIMILAR TO THAT DESCRIBED IN "H.4.B" BELOW.

2. DETERIORATION DUE TO A MINOR AMOUNT OF RUST WILL NOT NECESSARILY BE CAUSE FOR REPLACING THE STRAP. HOWEVER, AN EXCESSIVELY RUSTED/DAMAGED/PITTED STRAP IS CAUSE FOR REPLACING THE STRAP.

3. A DAMAGED OR DEFECTIVE SEAL IS SUFFICIENT CAUSE FOR REPLACEMENT OF THE SEAL.

A) A STRAP TENSIONING TOOL CAN BE USED IF THE STRAP HAS AT LEAST A 6" LONG TAB AT THE SEAL. SEE GENERAL NOTE "Q" AT LEFT.

B) AN 18" OR LONGER STRAP CAN BE USED AS A SPLICE PIECE. CUT THE LOOSE STRAP ON BOTH SIDES OF THE ORIGINAL SEAL AND DISCARD THE CUT OUT SECTION. OVERLAP THE END OF THE STRAP SPLICE PIECE TO ONE END OF THE ORIGINAL STRAPPING SO AS TO PROTRUCE SLIGHTLY BEYOND THE END OF THE SEAL TO BE USED. POSITION AND SECURE SEAL TO OVERLAPPED SECTIONS WITH TWO PAIR OF NOTCHES, USING A STRAPPING TOOL, TENSION AND SEAL THE LENGTHENED STRAP. THE STRAP SPLICE PIECE MAY BE CUT FROM NEW STRAP OR USED STRAP, PROVIDED IT IS AT LEAST OF AS GOOD A QUALITY AS THE STRAP TO WHICH IT IS BEING SECURED. NOTE: ONLY ONE SPLICE PER STRAP IS ALLOWED ON UNIT LOADS OF AMMUNITION.

5. CAUTION: WHEN A STRAP IS REPLACED/DAMAGED OR RE-TENSIONED, AND THE OTHER STRAPS ON A UNIT LOAD ARE NOT, CARE MUST BE EXERCISED TO INSURE THAT THE TENSION ON THE AFFECTED STRAP IS NEARLY THE SAME AS THAT OF THE OTHER STRAPS.

J. ROOFING NAILS IN ACCORDANCE WITH ASTM F1667, NAIL R-022 MAY BE USED AS AN ALTERNATE TO STAPLES FOR SECURING STEEL STRAPS TO BOARDS. NAILS MUST BE APPLIED NEXT TO THE STRAPPING SUCH THAT THE NAIL HEADS OVERLAP THE STRAPPING. APPLY TWO NAILS PER END TO REPLACE ONE SPLICE ON EITHER SIDE OF THE STRAP, WITH THE SECOND NAIL APPLIED APPROXIMATELY 180 DEGREES FROM THE FIRST NAIL.

K. UNIT LOAD MARKING WILL BE ACCOMPANY IN ACCORDANCE WITH DAC DRAWING DACO5981, UNIT LOAD MARKING FOR SHIPMENT AND STORAGE, AMMUNITION AND EXPLOSIVES.

L. CONVERSION TO METRIC EQUIVALENTS: DIMENSIONS WITHIN THIS DOCUMENT ARE EXPRESSED IN INCHES, AND WEIGHTS ARE EXPRESSED IN POUNDS. WHEN NECESSARY, THE METRIC EQUIVALENTS MAY BE COMPUTED ON THE BASIS OF THE FIRST INCH EQUALS 25.4MM AND ONE POUND EQUALS 0.454 KG.

M. WHEN ASSEMBLING A PALLET UNIT, CARE SHALL BE TAKEN TO INSURE THAT THE CONTAINERS AND DUNNAGE ASSEMBLIES ARE EVENLY ALIGNED SO THAT THE SIDES AND EDGES OF THE UNIT LOAD DO NOT EXCEED A 1/2" TOLERANCE, RELATIVE TO THE PALLET.

N. DIMENSIONS GIVEN FOR DUNNAGE ASSEMBLIES WILL BE FIELD CHECKED PRIOR TO THEIR ASSEMBLY. THIS GUIDANCE MUST BE APPLIED PRIOR TO BEGINNING A PALLETTING OPERATION, DUE TO VARIATIONS BETWEEN MANUFACTURER, dimensions, adjustments may be required as to the location of certain pieces on dunnage assemblies.

O. ALL WOODEN DUNNAGE USED IN UNIT LOADS SHALL BE PRESERVATIVE TREATED IN ACCORDANCE WITH THE PROCEDURES SPECIFIED IN MIL-E-2427 FOR CLEATED WOODEN BOXES. IF THE DUNNAGE CONSISTS OF MORE THAN ONE COMPONENT, IT MUST BE ASSEMBLED PRIOR TO TREATMENT. THE LETTERS PA Denoting PSD (COPPER-S-QUINQNOLATE), PB Denoting M-GARD W505 (ZINC NAPHTHIANE EMULSISSIBLE), OR PC Denoting M-GARD W510 OR CUNAPLOS 5 (COPPER NAPHTHIANE) MUST BE APPLIED TO THE DUNNAGE IN LETTERS AT LEAST ONE INCH HIGH.

Q. COOLER NAILS MAY BE SUBSTITUTED FOR THE COMMON NAILS AS SPECIFIED WITHIN EACH APPENDIX BY APPLYING THE FOLLOWING GUIDANCE. THE NUMBER OF COOLER NAILS TO BE USED WILL BE THE NUMBER OF COMMON NAILS MULTIPLIED BY 1.2 AND ROUNDED UP TO THE NEXT WHOLE NUMBER. THE SIZE OF THE COOLER NAILS TO BE USED WILL BE THE SAME AS SPECIFIED FOR THE COMMON NAILS (4L, 6L, 10L, ETC.). THE COOLER NAILS WILL COMPLY TO THE SIZE AND WEIGHT TOLERANCES SPECIFIED WITHIN ASTM F1667 FOR COOLER NAILS.

(DESCRIPTION CONTINUED ON PAGE 3)
PALLET UNIT DATA

<table>
<thead>
<tr>
<th>ITEMS INCLUDED</th>
<th>*HAZARD CLASS AND DIVISION</th>
<th>*COMPATIBILITY GROUP</th>
<th>APPROX WEIGHT (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSN</td>
<td>DODIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-534-2535</td>
<td>DA39</td>
<td>1.1</td>
<td>D</td>
</tr>
<tr>
<td>01-552-1850</td>
<td>DA45</td>
<td>1.1</td>
<td>D</td>
</tr>
</tbody>
</table>

HAZARD AND CLASSIFICATION DATA CONTAINED IN THE ABOVE CHART IS FOR GUIDANCE AND INFORMATIONAL PURPOSES ONLY. VERIFICATION OF THE SPECIFIED DATA SHOULD BE MADE BY CONSULTING THE MOST RECENT JOINT HAZARD CLASSIFICATION SYSTEM LISTING OR OTHER APPROVED LISTING(S).

GENERAL NOTES CONTINUED FROM PAGE 2

R. ALL NON-MANUFACTURED WOOD USED IN THE PALLETIZED LOAD SHALL BE HEAT TREATED TO A CORE TEMPERATURE OF 56 DEGREES CELSIUS FOR A MINIMUM OF 30 MINUTES. THE PALLET MANUFACTURER AND THE MANUFACTURER OF WOOD TO BUILD FILLER ASSEMBLIES AND DUNNAGE ASSEMBLIES FOR THE PALLETIZED LOAD SHALL BE AFFILIATED WITH AN INSPECTION AGENCY ACCREDITED BY THE AMERICAN LUMBER STANDARDS COMMITTEE. THE PALLET MANUFACTURER AND THE MANUFACTURER OF WOOD USED TO BUILD FILLER ASSEMBLIES AND DUNNAGE ASSEMBLIES FOR THE PALLETIZED LOAD SHALL ENSURE TRACEABILITY TO THE ORIGINAL SOURCE OF HEAT TREATMENT. EACH PALLET, FILLER ASSEMBLY, OR DUNNAGE ASSEMBLY SHALL BE MARKED TO SHOW THE CONFORMANCE TO THE INTERNATIONAL PLANT PROTECTION CONVENTION STANDARD. PALLETS, FILLER ASSEMBLIES, AND DUNNAGE ASSEMBLIES MADE OF NON-MANUFACTURED WOOD SHALL BE HEAT TREATED AND MARKED APPROPRIATELY, THE QUALITY MARK FOR THE PALLET SHALL BE PLACED ON TWO OPPOSITE END POSTS. THE QUALITY MARK FOR THE FILLER ASSEMBLIES AND DUNNAGE ASSEMBLIES SHALL BE PLACED ON TWO OPPOSITE SIDES. FOREIGN MANUFACTURERS SHALL HAVE THE HEAT TREATMENT OF NON-MANUFACTURED WOOD PRODUCTS VERIFIED IN ACCORDANCE WITH THEIR NATIONAL PLANT PROTECTION ORGANIZATION'S COMPLIANCE PROGRAM.

S. DIMENSIONS, CUBE AND WEIGHT OF A PALLET UNIT WILL VARY SLIGHTLY DEPENDING UPON THE ACTUAL DIMENSIONS OF THE CONTAINERS AND THE WEIGHT OF THE SPECIFIC ITEM BEING UNITIZED.

T. THE LOAD STRAPS MUST BE THREADED THROUGH THE STRAP SLOTS OF A PALLET. LOAD STRAPS MUST BE TENSIONED AND SEALED PRIOR TO APPLICATION OF TIEDOWN STRAPS.

U. INSTALL EACH TIEDOWN STRAP TO PASS UNDER THE TOP DECK BOARDS OF THE PALLET AND TO BE LOCATED AS SHOWN. TIEDOWN STRAPS WILL NOT BE APPLIED UNTIL THE LOAD STRAPS HAVE BEEN TENSIONED AND SEALED.

V. THE FOLLOWING AMC DRAWINGS ARE APPLICABLE FOR OUTLOADING OF THE ITEMS COVERED BY THIS DRAWING. CAUTION: THIS PALLET UNIT IS NOT APPROVED FOR STORAGE, AND IS INTENDED FOR FIELD RETURNS ONLY.

 ![Car Loading](19-48-4115-5PA1002)
 ![Truck Loading](19-48-4137-11PA1003)
 ![Container](19-48-4153-15PA1002)
 ![M51Van](19-48-4166-15PA1003)
 ![Side Opening ISO Container](19-48-4267-15PA1009)

W. THE STYLE 1 PALLET Delineated in the Detail on Page 4 Need Not Have Chamfers as Specified within Military Specification MIL-P-15011 When Used for the Unitization of Items Covered by this Drawing.

X. IF TWO OR LESS P179 CONTAINERS ARE TO BE UNITIZED, FILLER ASSEMBLIES MUST BE USED. IF TWO P179 CONTAINERS ARE TO BE UNITIZED, ONE FILLER ASSEMBLY WILL BE USED IN THE POSITION OF THE CENTER CONTAINER AS DETAILED IN "ONE FILLER ASSEMBLY UNIT LOAD" DETAIL ON PAGE 6. IF ONLY ONE P179 CONTAINER IS TO BE UNITIZED, TWO FILLER ASSEMBLIES WILL BE USED AND POSITIONED WHERE THE TWO OUTER CONTAINERS NORMALLY WOULD APPEAR AS DEPICTED IN THE "TWO FILLER ASSEMBLY UNIT LOAD" DETAIL ON PAGE 6.

PROJECT DET 0801
LOAD STRAP, 3/4" X .031" OR .035" X 9'-7" LONG STEEL STRAPPING (2 REQD). SEE NOTE "T" ON PAGE 3.

TOP ASSEMBLY (1 REQD). SEE DETAIL ON PAGE 5.

SEAL FOR 3/4" STRAPPING (3 REQD, 1 PER STRAP). CRIMP AND SEAL WITH TWO PAIR OF NOTCHES.

FOR BOTH LOAD AND TIEDOWN STRAPS, TWO OF THE STAPLES PER STRAP ARE LOCATED ON OPPOSITE SIDES OF THE PALLET FILL ASSEMBLY.

FOR BOTH LOAD AND TIEDOWN STRAPS, TWO OF THE STAPLES PER STRAP ARE LOCATED ON THE TOP ASSEMBLY. NOTE: ENSURE STAPLES ARE POSITIONED TO PENETRATE THE STRAPPING BOARD IN THE TOP ASSEMBLY.

PALLET UNIT
SEE GENERAL NOTE "S" ON PAGE 3.

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>LUMBER</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" X 4"</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>1" X 6"</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>2" X 4"</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>NAILS</td>
<td>NO. REQD</td>
<td>POUNDS</td>
</tr>
<tr>
<td>4d (1-1/2")</td>
<td>54</td>
<td>0.19</td>
</tr>
<tr>
<td>8d (2-1/2")</td>
<td>8</td>
<td>0.08</td>
</tr>
<tr>
<td>10d (3")</td>
<td>20</td>
<td>0.31</td>
</tr>
<tr>
<td>Pallet, 40" X 48"</td>
<td>1 REQD</td>
<td>80 LBS</td>
</tr>
<tr>
<td>Steel Strapping, 3/4"</td>
<td>50,59" REQD</td>
<td>4.52 LBS</td>
</tr>
<tr>
<td>Seal for 3/4" Strapping</td>
<td>5 REQD</td>
<td>NIL</td>
</tr>
<tr>
<td>Staple, 15/16" X 3/4"</td>
<td>20 REQD</td>
<td>NIL</td>
</tr>
</tbody>
</table>
STRAPPING BOARD
1" x 6" x 36-1/4"
(3 REQD). NAIL TO BEARING AND SUPPORT PIECES W/3-4d NAILS AT EACH JOINT.

BEARING PIECE
1" X 4" X 44-1/2"
(4 REQD).

SUPPORT PIECE
1" X 6" X 44-1/2"
(2 REQD).

SID VIEW

TOP ASSEMBLY

END BUFFER
2" X 4" X 37"
(2 REQD).

SIDE BUFFER
2" X 4" X 48"
(2 REQD). NAIL TO THE END BUFFERS W/2-10d NAILS AT EACH END.

SIDE RESTRAINT PIECE, 2" X 4" X 4-3/8"
(4 REQD). POSITION AS SHOWN AND NAIL TO END BUFFERS W/3-10d NAILS.

PALLET FILL ASSEMBLY
LONGITUDINAL PIECE
2" X 6" X 45" (2 REQD). NAIL TO LATERAL PIECES W/2-10d NAILS AT EACH JOINT.

LATERAL PIECE
2" X 6" X 6-3/16" (5 REQD).

NAIL TO LONGITUDINAL PIECE AND LATERAL PIECE WT-10d NAILS AS SHOWN IN END VIEW AT RIGHT.

FILLER ASSEMBLY

FILLER ASSEMBLY
(1 REQD). POSITION AS SHOWN AND NAIL THRU PALLET FILL ASSEMBLY INTO THE FILLER ASSEMBLY W/3-10d NAILS ON EACH SIDE.

END VIEW

ISOMETRIC VIEW
SEE THE DETAIL ON PAGE 4 FOR ADDITIONAL ASSEMBLY DETAILS.

ONE FILLER ASSEMBLY UNIT LOAD
SEE GENERAL NOTE "X" ON PAGE 3

END VIEW

ISOMETRIC VIEW
SEE THE DETAIL ON PAGE 4 FOR ADDITIONAL ASSEMBLY DETAILS.

TWO FILLER ASSEMBLY UNIT LOAD
(SEE GENERAL NOTE "X" ON PAGE 3)