Award Number: W81XWH-06-1-0238

TITLE: Effects of Inactivating Ras-Converting Enzyme or Isoprenylcysteine Carboxyl Methyltransferase in the Pathogenesis of Chronic Myelogenous Leukemia.

PRINCIPAL INVESTIGATOR: Ruibao Ren, M.D.,Ph.D.

CONTRACTING ORGANIZATION: Brandeis University
Waltham, MA 02454

REPORT DATE: February 2008

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
14. ABSTRACT
The BCR-ABL fusion gene, the hallmark of CML, plays a causal role in the development of CML. The BCR-ABL tyrosine kinase inhibitors have been successfully used to treat patients with CML, but residual disease persists and drug resistance emerges. Although BCR-ABL remains to be an attractive target for developing CML therapies, identifying and targeting additional essential components in the development of CML are important for overcoming resistance to BCR-ABL tyrosine kinase inhibitors and for eradicating leukemic cells. Substantial evidence indicates that Ras and Ras related proteins are critical mediators of BCR-ABL in leukemogenesis. Ras-converting enzyme (Rce1) and isoprenylcysteine carboxyl methyltransferase (Icmt) are two unique enzymes for Ras modifications that are critical for their functions. Targeted inactivation of Rce1 or Icmt is, therefore, an attractive strategy for the treatment of CML. The goal of this project is to determine whether targeted inactivation of Rce1 or Icmt could block BCR-ABL leukemogenesis. In this study, we have found that Icmt plays a critical role in BCR-ABL leukemogenesis and that the role of Rce1 in BCR-ABL leukemogenesis is dosage dependent. We have also found that the mutation affecting the AAX peptide cleavage and methylation of RAS in cis significantly reduces RAS leukemogenesis, suggesting that the AAX peptide cleavage and methylation play an important role for RAS leukemogenesis.

15. SUBJECT TERMS
Chronic Myelogenous Leukemia (CML)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Appendices</td>
<td>6</td>
</tr>
</tbody>
</table>
Effects of Inactivating Ras-Converting Enzyme or Isoprenylcysteine Carboxyl Methyltransferase in the Pathogenesis of Chronic Myelogenous Leukemia

Report

Introduction

The BCR-ABL fusion gene, the hallmark of CML, plays a causal role in the development of CML. The BCR-ABL tyrosine kinase inhibitors have been successfully used to treat patients with CML, but residual disease persists and drug resistance emerges. This clinical time bomb will have to be diffused in the not so distant future. Although BCR-ABL remains to be an attractive target for developing CML therapies, identifying and targeting additional essential components in the development of CML are important for overcoming resistance to BCR-ABL tyrosine kinase inhibitors and for eradicating leukemic cells. Substantial evidence indicates that RAS and RAS related proteins, which are commonly activated in human cancers, are critical mediators of BCR-ABL in leukemogenesis. RAS-converting enzyme (Rce1) and isoprenylcysteine carboxyl methyltransferase (Icmt) are two unique enzymes for RAS modifications that are critical for their functions. Targeted inactivation of Rce1 or Icmt is, therefore, an attractive strategy for the treatment of CML. The goal of this project is to determine whether targeted inactivation of Rce1 or Icmt could block BCR-ABL leukemogenesis. In the past funding period we have generated mice with conditional alleles of Rce1 or Icmt and used these mice to evaluate the importance of Rce1 and Icmt in BCR-ABL leukemogenesis. Our preliminary results show that Icmt plays an important role in the pathogenesis of CML.

Body

1. (Task 1) We have generated Rce1^{flx/flx} or Icmt^{flx/flx} mice, as well as Rce1^{flx/+}, Icmt^{flx/+}, Rce1^{+/+}, or Icmt^{+/+} control mice harboring the Mx1-Cre transgene through breeding Rce1^{flx/+}/Mx1-Cre and Icmt^{flx/+}/Mx1-Cre mice.
2. (Task 6) We examined the leukemogenic potential of BCR-ABL with or without Rce1 or Icmt using the mouse bone marrow transduction and transplantation model for CML as proposed. Briefly Cre expression was induced in Rce1^{flx/flx}/Mx1-Cre, Rce1^{flx/+}/Mx1-Cre, Icmt^{flx/flx}/Mx1-Cre, Icmt^{flx/+}/Mx1-Cre, or Mx1-Cre control mice by intraperitoneal injections of polyinosinic-polycytidylidic ribonucleic acid (pI-pC) for 4 times. These mice were then treated with 5-fluorouracil (5-FU) for 4 days to enrich and activate hematopoietic stem cells. Bone marrow (BM) cells from the above mice were isolated and transduced with BCR-ABL retroviruses. As shown in Figure 1, BCR/ABL leukemogenic potential was reduced in pI-pC-induced Rce1^{flx/+}/Mx1-Cre mice, compared to BCR/ABL transduced Rce1^{+/+}/Mx1-Cre mice. However, BCR/ABL transduced Rce1^{flx/flx}/Mx1-Cre mice developed disease much faster than the control mice with wt Rce1. These data suggest that the role of Rce1 in BCR/ABL leukemogenesis is complicated and dependent on the dosage. This may due to the fact that there are many substrates of Rce1, some of them may facilitate BCR-ABL leukemogenesis, while others may inhibit. We will repeat this experiment and confirm the finding.

Figure 1. Survival of mice receiving transplantation of BCR-ABL transduced BM cells from pI-pC-induced Rce1^{flx/flx}/Mx1-Cre, Rce1^{flx/+}/Mx1-Cre, Rce1^{+/+}/Mx1-Cre mice. Survival curves were generated by Kaplan-Meier survival analysis. The number (n) of mice for each group is indicated.
Unlike complicated result of Rce1 inactivation, Icmt inactivation significantly mitigated BCR-ABL leukemogenesis (Figure 2). This result suggests that Icmt plays an critical role in BCR-ABL leukemogenesis and that Icmt may be an effective target for developing CML therapeutics.

Figure 2. Survival of mice receiving transplantation of BCR/ABL transduced BM cells from pI-pC-induced Icmt^flx/flx/Mx1-Cre, Icmt^flx/+ /Mx1-Cre, Icmt^+/+ /Mx1-Cre mice. Survival curves were generated by Kaplan-Meier survival analysis. The unit of time is day post-BM transplantation. The number (n) of mice for each group is indicated.

3. (Related to Tasks 5 and 9). In addition to RAS proteins, a broad class of proteins, many of which are also involved in cellular regulatory processes that are important for tumor formation, are also substrates of Rce1 and Icmt. Rce1 and Icmt may affect BCR-ABL leukemogenesis through RAS proteins and/or other targets of the enzymes. To address whether Rce1 and Icmt affect BCR/ABL leukemogenesis through RAS, we have generated an A2 (the second alphatic residue in the CAAX motif) mutant of oncogenic RAS (NRASD12) for testing the importance of removal of the AAX tripeptide and methylation of the terminal farnesylated cysteine residue in RAS itself (this would avoid complications of targeting proteins other than RAS). The A2 residue has been shown to be important for the AAX peptide cleavage and methylation. Using the mouse bone marrow transduction and transplantation model system, we demonstrated that the A2 mutant of NRASD12 has significantly reduced leukemogenic potential- having a longer disease latency compared to NRASD12 mice (P<0.0001) (Figure 3). In addition, unlike NRASD12, which induces acute myelogenous leukemia (AML) in most recipient mice, the A2 mutant of NRASD12 only induces chronic myelomonocytic leukemia (CMML), a milder form of hematological malignancy (data not shown). The results indicate that the AAX peptide cleavage and methylation play an important role for RAS leukemogenesis.

Figure 3. Survival of mice receiving transplantation of oncogenic NRAS (NRASD12), the A2 mutant of NRASD12, or GFP control retroviruses transduced BM cells from 5-FU treated BALB/c mice. Survival curves were generated by Kaplan-Meier survival analysis. The number (n) of mice for each group is indicated.
We have previously found that the Grb2 SH2 binding site Y177 of BCR-ABL, the major mediator of BCR-ABL inactivating RAS, is required for the induction of CML-like disease by BCR-ABL. Recently we further show that oncogenic RAS can rescue the defect of the Y177F mutant BCR-ABL in the induction of CML-like disease. We will test the importance of the AAX peptide cleavage and methylation of RAS in BCR-ABL leukemogenesis using the A2 mutant of oncogenic RAS.

Key research accomplishment

• We have generated Rce1\(^{\text{flx/flx}}\) or Icmt\(^{\text{flx/flx}}\) mice, as well as Rce1\(^{\text{flx/+}}\), Icmt\(^{\text{flx/+}}\), Rce1\(^{+/+}\), or Icmt\(^{+/+}\) control mice harboring the Mx1-Cre transgene.
• We have found that Icmt plays a critical role in BCR-ABL leukemogenesis. This finding suggests that Icmt may be an effective target for developing CML therapeutics.
• We have found that the role of Rce1 in BCR-ABL leukemogenesis is dosage dependent.
• We have found that the mutation affecting the AAX peptide cleavage and methylation of RAS in cis significantly reduces RAS leukemogenesis, suggesting that the AAX peptide cleavage and methylation play an important role for RAS leukemogenesis.

Reportable outcomes
Not yet.

Conclusion

Our results show that Icmt plays an important role in the pathogenesis of CML and suggest that this enzyme is an effective target for developing CML therapies. Our results also show that the role of Rce1 in BCR-ABL leukemogenesis is dosage dependent.

References
NA

Appendices
NA